BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 12134159)

  • 1. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly.
    Fukata Y; Itoh TJ; Kimura T; Ménager C; Nishimura T; Shiromizu T; Watanabe H; Inagaki N; Iwamatsu A; Hotani H; Kaibuchi K
    Nat Cell Biol; 2002 Aug; 4(8):583-91. PubMed ID: 12134159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity.
    Chae YC; Lee S; Heo K; Ha SH; Jung Y; Kim JH; Ihara Y; Suh PG; Ryu SH
    Cell Signal; 2009 Dec; 21(12):1818-26. PubMed ID: 19666111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones.
    Arimura N; Ménager C; Kawano Y; Yoshimura T; Kawabata S; Hattori A; Fukata Y; Amano M; Goshima Y; Inagaki M; Morone N; Usukura J; Kaibuchi K
    Mol Cell Biol; 2005 Nov; 25(22):9973-84. PubMed ID: 16260611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth.
    Nishimura T; Fukata Y; Kato K; Yamaguchi T; Matsuura Y; Kamiguchi H; Kaibuchi K
    Nat Cell Biol; 2003 Sep; 5(9):819-26. PubMed ID: 12942088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity.
    Arimura N; Hattori A; Kimura T; Nakamuta S; Funahashi Y; Hirotsune S; Furuta K; Urano T; Toyoshima YY; Kaibuchi K
    J Neurochem; 2009 Oct; 111(2):380-90. PubMed ID: 19659462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of CRMP-2 by GDNF and analysis of the CRMP-2 promoter region.
    Kodama Y; Murakumo Y; Ichihara M; Kawai K; Shimono Y; Takahashi M
    Biochem Biophys Res Commun; 2004 Jul; 320(1):108-15. PubMed ID: 15207709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubulin and CRMP-2 complex is transported via Kinesin-1.
    Kimura T; Watanabe H; Iwamatsu A; Kaibuchi K
    J Neurochem; 2005 Jun; 93(6):1371-82. PubMed ID: 15935053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10.
    Bondallaz P; Barbier A; Soehrman S; Grenningloh G; Riederer BM
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):681-95. PubMed ID: 17009328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRMP-2 induces axons in cultured hippocampal neurons.
    Inagaki N; Chihara K; Arimura N; Ménager C; Kawano Y; Matsuo N; Nishimura T; Amano M; Kaibuchi K
    Nat Neurosci; 2001 Aug; 4(8):781-2. PubMed ID: 11477421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGS2 promotes formation of neurites by stimulating microtubule polymerization.
    Heo K; Ha SH; Chae YC; Lee S; Oh YS; Kim YH; Kim SH; Kim JH; Mizoguchi A; Itoh TJ; Kwon HM; Ryu SH; Suh PG
    Cell Signal; 2006 Dec; 18(12):2182-92. PubMed ID: 16820281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism.
    Petratos S; Li QX; George AJ; Hou X; Kerr ML; Unabia SE; Hatzinisiriou I; Maksel D; Aguilar MI; Small DH
    Brain; 2008 Jan; 131(Pt 1):90-108. PubMed ID: 18000012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PASK (proline-alanine-rich Ste20-related kinase) binds to tubulin and microtubules and is involved in microtubule stabilization.
    Tsutsumi T; Kosaka T; Ushiro H; Kimura K; Honda T; Kayahara T; Mizoguchi A
    Arch Biochem Biophys; 2008 Sep; 477(2):267-78. PubMed ID: 18675246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. History-dependent catastrophes regulate axonal microtubule behavior.
    Stepanova T; Smal I; van Haren J; Akinci U; Liu Z; Miedema M; Limpens R; van Ham M; van der Reijden M; Poot R; Grosveld F; Mommaas M; Meijering E; Galjart N
    Curr Biol; 2010 Jun; 20(11):1023-8. PubMed ID: 20471267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinated and detyrosinated microtubules in axonal processes of cerebellar macroneurons grown in culture.
    Arregui C; Busciglio J; Caceres A; Barra HS
    J Neurosci Res; 1991 Feb; 28(2):171-81. PubMed ID: 1674546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herpes simplex virus-mediated expression of the axonal protein tau in human model neurons (NT2-N cells).
    Fath T; Eidenmüller J; Maas T; Brandt R
    Microsc Res Tech; 2000 Jan; 48(2):85-96. PubMed ID: 10649509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of MINUS, a small polypeptide that functions as a microtubule nucleation suppressor.
    Fanara P; Oback B; Ashman K; Podtelejnikov A; Brandt R
    EMBO J; 1999 Feb; 18(3):565-77. PubMed ID: 9927416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules.
    Houtman SH; Rutteman M; De Zeeuw CI; French PJ
    Neuroscience; 2007 Feb; 144(4):1373-82. PubMed ID: 17196341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.
    Utreras E; Jiménez-Mateos EM; Contreras-Vallejos E; Tortosa E; Pérez M; Rojas S; Saragoni L; Maccioni RB; Avila J; González-Billault C
    Dev Neurosci; 2008; 30(1-3):200-10. PubMed ID: 18075266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered microtubule organization in small-calibre axons of mice lacking tau protein.
    Harada A; Oguchi K; Okabe S; Kuno J; Terada S; Ohshima T; Sato-Yoshitake R; Takei Y; Noda T; Hirokawa N
    Nature; 1994 Jun; 369(6480):488-91. PubMed ID: 8202139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33.
    Goshima Y; Nakamura F; Strittmatter P; Strittmatter SM
    Nature; 1995 Aug; 376(6540):509-14. PubMed ID: 7637782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.