BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12134499)

  • 1. Effect of enhanced concentration of CO2 on transpiration and kinetic parameters of photosynthetic CO2 gas exchange in sugar beet grown at different concentrations of nitrate.
    Tsyuryupa SN; Mudrik VA; Romanova AK
    Dokl Biol Sci; 2002; 384():260-2. PubMed ID: 12134499
    [No Abstract]   [Full Text] [Related]  

  • 2. Acclimation of sugar-beet plants grown under varying nitrate supply to doubled CO2 concentration in the air.
    Romanova AK; Novichkova NS; Mudrik VA; Demidova RN; Polyakova VA
    Dokl Biochem Biophys; 2001; 378():228-30. PubMed ID: 11712188
    [No Abstract]   [Full Text] [Related]  

  • 3. Plant responses to short- and long-term exposures to high carbon dioxide levels in closed environments.
    Grodzinski B; Woodrow L; Leonardos ED; Dixon M; Tsujita MJ
    Adv Space Res; 1996; 18(4-5):203-11. PubMed ID: 11538799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of photosynthetic function and reactive oxygen species metabolism in sugar beet (Beta vulgaris L.) cultivars under waterlogging stress and associated tolerance mechanisms.
    Sha S; Wang G; Liu J; Wang M; Wang L; Liu Y; Geng G; Liu J; Wang Y
    Plant Physiol Biochem; 2024 May; 210():108651. PubMed ID: 38653098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study.
    Burkart S; Manderscheid R; Weigel HJ
    Plant Biol (Stuttg); 2009 Nov; 11 Suppl 1():109-23. PubMed ID: 19778375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding.
    Bragina TV; Drozdova IS; Ponomareva Y; Alekhin VI; Grineva GM
    Dokl Biol Sci; 2002; 384():274-7. PubMed ID: 12134503
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of transient starch in acclimation to elevated atmospheric CO2.
    Ludewig F; Sonnewald U; Kauder F; Heineke D; Geiger M; Stitt M; Müller-Röber BT; Gillissen B; Kühn C; Frommer WB
    FEBS Lett; 1998 Jun; 429(2):147-51. PubMed ID: 9650579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide exchange of larch (Larix gmelinii) cones during development.
    Wang W; Zu Y; Cui S; Hirano T; Watanabe Y; Koike T
    Tree Physiol; 2006 Oct; 26(10):1363-8. PubMed ID: 16815838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of endophytic Paenibacillus polymyxa S-7 on photosynthesis, yield, and quality of sugar beet].
    Shi YW; Lou K; Li C; Yang L; Wang XQ; Liu WY
    Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):597-602. PubMed ID: 19637598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings.
    Cao B; Dang QL; Zhang S
    Tree Physiol; 2007 Jun; 27(6):891-9. PubMed ID: 17331907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photorespiratory and respiratory decarboxylations in leaves of C3 plants under different CO2 concentrations and irradiances.
    Pärnik T; Ivanova H; Keerberg O
    Plant Cell Environ; 2007 Dec; 30(12):1535-44. PubMed ID: 17986155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sugar beet photosynthesis under conditions of increasing water deficiency in soil and protective effects of a low-molecular-weight alcohol].
    Kosobriukhov AA; Bil KY; Nishio JN
    Prikl Biokhim Mikrobiol; 2004; 40(6):668-74. PubMed ID: 15609858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate and ammonium differ in their impact on δ
    Ghiasi S; Lehmann MM; Badeck FW; Ghashghaie J; Hänsch R; Meinen R; Streb S; Hüdig M; Ruckle ME; Carrera DÁ; Siegwolf RTW; Buchmann N; Werner RA
    Isotopes Environ Health Stud; 2021 Mar; 57(1):11-34. PubMed ID: 32885670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.).
    Monti A; Brugnoli E; Scartazza A; Amaducci MT
    J Exp Bot; 2006; 57(6):1253-62. PubMed ID: 16467409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Respiration of sugar beet leaves during supply of nitrate and ammonium].
    OKANENKO AS; OSTROVSKAIA LK
    Biokhimiia; 1951; 16(3):214-21. PubMed ID: 14848086
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic Gas Exchange in Land Plants at the Leaf Level.
    Busch FA
    Methods Mol Biol; 2018; 1770():25-44. PubMed ID: 29978394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.
    Rodríguez-Calcerrada J; Limousin JM; Martin-StPaul NK; Jaeger C; Rambal S
    Tree Physiol; 2012 Apr; 32(4):464-77. PubMed ID: 22491489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of crop gas exchange and transpiration data obtained with CEEF to global change problem.
    Tako Y; Arai R; Otsubo K; Nitta K
    Adv Space Res; 2001; 27(9):1541-5. PubMed ID: 11695434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.