BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12134503)

  • 1. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding.
    Bragina TV; Drozdova IS; Ponomareva Y; Alekhin VI; Grineva GM
    Dokl Biol Sci; 2002; 384():274-7. PubMed ID: 12134503
    [No Abstract]   [Full Text] [Related]  

  • 2. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light saturated RuBP oxygenation by Rubisco is a robust predictor of light inhibition of respiration in Triticum aestivum L.
    Griffin KL; Turnbull MH
    Plant Biol (Stuttg); 2013 Jul; 15(4):769-75. PubMed ID: 23451982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rates of photosynthesis, respiration, and transpiration in young maize plants under hypoxia.
    Bragina TV; Drozdova IS; Alekhin VI; Ponomareva Y; Grineva GM
    Dokl Biol Sci; 2001; 380():482-5. PubMed ID: 12918411
    [No Abstract]   [Full Text] [Related]  

  • 5. Zonal effects of temperature on plant net photosynthesis.
    Kuretz VK; Drozdov SN; Popov EG
    Dokl Biol Sci; 2005; 405():477-9. PubMed ID: 16485650
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiological and proteomic analysis of maize seedling response to water deficiency stress.
    Xin L; Zheng H; Yang Z; Guo J; Liu T; Sun L; Xiao Y; Yang J; Yang Q; Guo L
    J Plant Physiol; 2018 Sep; 228():29-38. PubMed ID: 29852332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics analysis reveals that nitric oxide regulates photosynthesis of maize seedlings under water deficiency.
    Shao R; Zheng H; Yang J; Jia S; Liu T; Wang Y; Guo J; Yang Q; Kang G
    Nitric Oxide; 2018 Dec; 81():46-56. PubMed ID: 30296585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intraleaf variations in carbonic anhydrase activity and gas exchange on leaf C18OO isoflux in Zea mays.
    Affek HP; Krisch MJ; Yakir D
    New Phytol; 2006; 169(2):321-9. PubMed ID: 16411935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature.
    Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT
    Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of photosynthesis and respiration measurement system using mass spectrometry.
    Goto E; Takakura T; Okamura N; Nishi I; Futami J
    Acta Hortic; 1996 Dec; 440():464-8. PubMed ID: 11541583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny.
    Ghashghaie J; Badeck FW; Girardin C; Huignard C; Aydinlis Z; Fonteny C; Priault P; Fresneau C; Lamothe-Sibold M; Streb P; Terwilliger VJ
    J Exp Bot; 2016 Apr; 67(9):2603-15. PubMed ID: 26970389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf Gas Exchange and Chlorophyll a Fluorescence in Maize Leaves Infected with Stenocarpella macrospora.
    Bermúdez-Cardona MB; Wordell Filho JA; Rodrigues FÁ
    Phytopathology; 2015 Jan; 105(1):26-34. PubMed ID: 25014681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of enhanced concentration of CO2 on transpiration and kinetic parameters of photosynthetic CO2 gas exchange in sugar beet grown at different concentrations of nitrate.
    Tsyuryupa SN; Mudrik VA; Romanova AK
    Dokl Biol Sci; 2002; 384():260-2. PubMed ID: 12134499
    [No Abstract]   [Full Text] [Related]  

  • 14. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange.
    Colmer TD; Pedersen O
    New Phytol; 2008; 177(4):918-926. PubMed ID: 18086222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to study the photosynthetic response of maize to the CO
    Geng X; Sun S; Hu X; Chen X; Li Y; Cao J; Feng H; Wei Y
    STAR Protoc; 2024 Jun; 5(2):103124. PubMed ID: 38870017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of transpiration and photosynthesis to reversible changes in photosynthetic foliage area in western red cedar (Thuja plicata) seedlings.
    Pepin S; Livingston NJ; Whitehead D
    Tree Physiol; 2002 Apr; 22(6):363-71. PubMed ID: 11960761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesophyll conductance: internal insights of leaf carbon exchange.
    Griffiths H; Helliker BR
    Plant Cell Environ; 2013 Apr; 36(4):733-5. PubMed ID: 23387473
    [No Abstract]   [Full Text] [Related]  

  • 18. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
    Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J
    Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.
    Pedersen O; Rich SM; Colmer TD
    Plant J; 2009 Apr; 58(1):147-56. PubMed ID: 19077169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.