BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12134513)

  • 1. Contribution of the processes of solvation of nonequilibrium states of cofactors to charge separation and electron transfer in reaction centers of Rhodobacter sphaeroides.
    Gorokhov VV; Paschenko VZ; Knox PP; Rubin AB
    Dokl Biochem Biophys; 2002; 384():163-6. PubMed ID: 12134513
    [No Abstract]   [Full Text] [Related]  

  • 2. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers.
    Paschenko VZ; Gorokhov VV; Knox PP; Krasilnikov PM; Redlin H; Renger G; Rubin AB
    Bioelectrochemistry; 2003 Oct; 61(1-2):73-84. PubMed ID: 14642912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein dynamics control the kinetics of initial electron transfer in photosynthesis.
    Wang H; Lin S; Allen JP; Williams JC; Blankert S; Laser C; Woodbury NW
    Science; 2007 May; 316(5825):747-50. PubMed ID: 17478721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides.
    Woodbury NW; Peloquin JM; Alden RG; Lin X; Lin S; Taguchi AK; Williams JC; Allen JP
    Biochemistry; 1994 Jul; 33(26):8101-12. PubMed ID: 8025116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemistry. Photosynthesis from the protein's perspective.
    Skourtis SS; Beratan DN
    Science; 2007 May; 316(5825):703-4. PubMed ID: 17478711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: influence of the charge separation rate and consequences for the rate-limiting step in the light-harvesting process.
    Beekman LM; van Mourik F; Jones MR; Visser HM; Hunter CN; van Grondelle R
    Biochemistry; 1994 Mar; 33(11):3143-7. PubMed ID: 8136347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating proton translocations in proteins: probing proton transfer pathways in the Rhodobacter sphaeroides reaction center.
    Sham YY; Muegge I; Warshel A
    Proteins; 1999 Sep; 36(4):484-500. PubMed ID: 10450091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation wavelength dependence of primary charge separation in reaction centers from Rhodobacter sphaeroides.
    Wang H; Lin S; Woodbury NW
    J Phys Chem B; 2008 Nov; 112(45):14296-301. PubMed ID: 18939793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.
    Brzezinski P; Andréasson LE
    Biochemistry; 1995 Jun; 34(22):7498-506. PubMed ID: 7779794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides.
    Peloquin JM; Williams JC; Lin X; Alden RG; Taguchi AK; Allen JP; Woodbury NW
    Biochemistry; 1994 Jul; 33(26):8089-100. PubMed ID: 8025115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.
    Sun C; Carey AM; Gao BR; Wraight CA; Woodbury NW; Lin S
    J Phys Chem B; 2016 Jun; 120(24):5395-404. PubMed ID: 27243380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [On the mechanism for stabilizing a long-living charge separated state of photosynthetic reaction centers frozen under intensive illumination].
    Krasil'nikov PM; Knox PP; Rubin AB
    Biofizika; 2013; 58(4):652-62. PubMed ID: 24455885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and kinetics of primary charge separation in bacterial photosynthesis.
    LeBard DN; Kapko V; Matyushov DV
    J Phys Chem B; 2008 Aug; 112(33):10322-42. PubMed ID: 18636767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of electron transfer in Rhodobacter sphaeroides reaction center.
    Hiyama M; Koga N
    Photochem Photobiol; 2011; 87(6):1297-307. PubMed ID: 21895666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous tiO2 films.
    Lukashev EP; Nadtochenko VA; Permenova EP; Sarkisov OM; Rubin AB
    Dokl Biochem Biophys; 2007; 415():211-6. PubMed ID: 17933338
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of extraction of the H-subunit from Rhodobacter sphaeroides reaction centers on relaxation processes associated with charge separation.
    Knox PP; Churbanova IY; Zakharova NI; Krasil'nikov PM; Lukashev EP; Rubin AB; Shaitan KV
    Biochemistry (Mosc); 2001 Jan; 66(1):91-5. PubMed ID: 11240399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer. Exploiting thermal motion.
    Schulten K
    Science; 2000 Oct; 290(5489):61-2. PubMed ID: 11183149
    [No Abstract]   [Full Text] [Related]  

  • 18. Weak temperature dependence of P (+) H A (-) recombination in mutant Rhodobacter sphaeroides reaction centers.
    Gibasiewicz K; Białek R; Pajzderska M; Karolczak J; Burdziński G; Jones MR; Brettel K
    Photosynth Res; 2016 Jun; 128(3):243-58. PubMed ID: 26942583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers.
    Nagarajan V; Parson WW; Davis D; Schenck CC
    Biochemistry; 1993 Nov; 32(46):12324-36. PubMed ID: 8241119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of the mechanism of initial electron transfer in bacterial reaction centers.
    Kirmaier C; Holten D
    Biochemistry; 1991 Jan; 30(3):609-13. PubMed ID: 1988049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.