These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12135086)

  • 1. Photoperiodic control of germination in the unicell Chlamydomonas.
    Suzuki L; Johnson CH
    Naturwissenschaften; 2002 May; 89(5):214-20. PubMed ID: 12135086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of zygospore transcripts during early germination in Chlamydomonas reinhardtii.
    Aoyama H; Saitoh S; Kuroiwa T; Nakamura S
    J Plant Physiol; 2014 Nov; 171(18):1685-92. PubMed ID: 25209695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: adaptive response to the photic environment or correlated response to the seasonal environment?
    Bradshaw WE; Quebodeaux MC; Holzapfel CM
    Am Nat; 2003 May; 161(5):735-48. PubMed ID: 12858281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mating and tetrad separation of Chlamydomonas reinhardtii for genetic analysis.
    Jiang X; Stern D
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.
    Lucas-Reina E; Romero-Campero FJ; Romero JM; Valverde F
    Plant Physiol; 2015 Jun; 168(2):561-74. PubMed ID: 25897001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in chloroplast genome composition and recombination during the maturation of zygospores of Chlamydomonas reinhardtii.
    Sears BB
    Curr Genet; 1980 Jul; 2(1):1-8. PubMed ID: 24189717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii.
    Ratcliff WC; Herron MD; Howell K; Pentz JT; Rosenzweig F; Travisano M
    Nat Commun; 2013; 4():2742. PubMed ID: 24193369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoperiod throughout the maternal life cycle, not photoperiod during seed imbibition, influences germination in
    Imaizumi T; Auge G; Donohue K
    Am J Bot; 2017 Apr; 104(4):516-526. PubMed ID: 28411210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Plant Cryptochrome Controls Key Features of the
    Müller N; Wenzel S; Zou Y; Künzel S; Sasso S; Weiß D; Prager K; Grossman A; Kottke T; Mittag M
    Plant Physiol; 2017 May; 174(1):185-201. PubMed ID: 28360233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid pools in developing Chlamydomonas reinhardtii: vegetative cells, gametes, and mature zygotes.
    Thomas JE; Goertzen CA; Nakamura K
    Biochem Cell Biol; 1992 Aug; 70(8):724-8. PubMed ID: 1476709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus).
    Perret M
    J Biol Rhythms; 1997 Apr; 12(2):136-45. PubMed ID: 9090567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zygospore formation between homothallic and heterothallic strains of Closterium.
    Tsuchikane Y; Tsuchiya M; Hindák F; Nozaki H; Sekimoto H
    Sex Plant Reprod; 2012 Mar; 25(1):1-9. PubMed ID: 21858438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of previous photoperiodic exposure on the reproductive response to a specific photoperiod signal in ewes.
    Sweeney T; Donovan A; Karsch FJ; Roche JF; O'Callaghan D
    Biol Reprod; 1997 Apr; 56(4):916-20. PubMed ID: 9096873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of DNA into the unicellular green alga Chlamydomonas reinhardtii.
    Keller LR
    Methods Mol Biol; 1995; 55():73-9. PubMed ID: 8528424
    [No Abstract]   [Full Text] [Related]  

  • 16. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.
    Boyd M; Rosenzweig F; Herron MD
    PLoS One; 2018; 13(1):e0192184. PubMed ID: 29381766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.
    Berger H; Blifernez-Klassen O; Ballottari M; Bassi R; Wobbe L; Kruse O
    Mol Plant; 2014 Oct; 7(10):1545-59. PubMed ID: 25038233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation among individuals in photoperiod responses: Effects of breeding schedule, photoperiod, and age-related photoperiodic experience in birds.
    Watts HE; MacDougall-Shackleton SA; Hahn TP
    J Exp Zool A Ecol Genet Physiol; 2015 Jul; 323(6):368-74. PubMed ID: 25865942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation of Chlamydomonas reinhardtii to its nutrient environment.
    Grossman A
    Protist; 2000 Oct; 151(3):201-24. PubMed ID: 11079767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement.
    Goldman BD
    J Biol Rhythms; 2001 Aug; 16(4):283-301. PubMed ID: 11506375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.