These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 12135481)
1. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Bhattacharyya S; Kerzmann A; Feig AL Eur J Biochem; 2002 Jul; 269(14):3425-32. PubMed ID: 12135481 [TBL] [Abstract][Full Text] [Related]
2. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release. D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490 [TBL] [Abstract][Full Text] [Related]
3. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography. Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427 [TBL] [Abstract][Full Text] [Related]
4. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739 [TBL] [Abstract][Full Text] [Related]
5. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B. Darkoh C; Kaplan HB; Dupont HL J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766 [TBL] [Abstract][Full Text] [Related]
6. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities. Ciesla WP; Bobak DA J Biol Chem; 1998 Jun; 273(26):16021-6. PubMed ID: 9632652 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and properties of 5-azido-UDP-glucose. Development of photoaffinity probes for nucleotide diphosphate sugar binding sites. Drake RR; Evans RK; Wolf MJ; Haley BE J Biol Chem; 1989 Jul; 264(20):11928-33. PubMed ID: 2745423 [TBL] [Abstract][Full Text] [Related]
8. Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. Jank T; Reinert DJ; Giesemann T; Schulz GE; Aktories K J Biol Chem; 2005 Nov; 280(45):37833-8. PubMed ID: 16157585 [TBL] [Abstract][Full Text] [Related]
9. Identification of the UDP-glucose-binding polypeptide of callose synthase from Beta vulgaris L. by photoaffinity labeling with 5-azido-UDP-glucose. Frost DJ; Read SM; Drake RR; Haley BE; Wasserman BP J Biol Chem; 1990 Feb; 265(4):2162-7. PubMed ID: 2137125 [TBL] [Abstract][Full Text] [Related]
10. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue. Alvin JW; Lacy DB J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497 [TBL] [Abstract][Full Text] [Related]
11. The beta-glucan synthase from Lolium multiflorum. Detergent solubilization, purification using monoclonal antibodies, and photoaffinity labeling with a novel photoreactive pyrimidine analogue of uridine 5'-diphosphoglucose. Meikle PJ; Ng KF; Johnson E; Hoogenraad NJ; Stone BA J Biol Chem; 1991 Nov; 266(33):22569-81. PubMed ID: 1834675 [TBL] [Abstract][Full Text] [Related]
12. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. Chaves-Olarte E; Florin I; Boquet P; Popoff M; von Eichel-Streiber C; Thelestam M J Biol Chem; 1996 Mar; 271(12):6925-32. PubMed ID: 8636120 [TBL] [Abstract][Full Text] [Related]
13. Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. Busch C; Hofmann F; Gerhard R; Aktories K J Biol Chem; 2000 May; 275(18):13228-34. PubMed ID: 10788427 [TBL] [Abstract][Full Text] [Related]
14. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107 [TBL] [Abstract][Full Text] [Related]
19. Specific binding of nucleotides and NAD+ to Clostridium difficile toxin A. Lobban MD; Borriello SP FEBS Lett; 1992 Feb; 298(2-3):185-7. PubMed ID: 1544441 [TBL] [Abstract][Full Text] [Related]
20. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques. Zeiser J; Gerhard R; Just I; Pich A J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]