These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12135546)

  • 1. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of test environment on intervertebral disc hydration.
    Pflaster DS; Krag MH; Johnson CC; Haugh LD; Pope MH
    Spine (Phila Pa 1976); 1997 Jan; 22(2):133-9. PubMed ID: 9122792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a New Annular Incision on Biomechanical Properties of the Intervertebral Disc.
    Fu LJ; Chen CS; Xie YZ; Yang JW; Sun XJ; Zhang P
    Orthop Surg; 2016 Feb; 8(1):68-74. PubMed ID: 27028383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Complex Loading Conditions on Intervertebral Disc Failure.
    Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ
    Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.
    Holsgrove TP; Gill HS; Miles AW; Gheduzzi S
    Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effects of over lordotic curvature after spinal fusion on adjacent intervertebral discs under continuous compressive load.
    Wang W; Pei B; Pei Y; Li H; Lu S; Wu X; Wu N; Shi Z; Hao Y; Fan Y
    Clin Biomech (Bristol); 2020 Mar; 73():149-156. PubMed ID: 31986460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading.
    Chuang SY; Popovich JM; Lin LC; Hedman TP
    Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent hydration of intervertebral discs during in vitro testing.
    Huber G; Morlock MM; Ito K
    Med Eng Phys; 2007 Sep; 29(7):808-13. PubMed ID: 17098458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
    Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M
    J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions.
    Costi JJ; Stokes IA; Gardner-Morse MG; Iatridis JC
    Spine (Phila Pa 1976); 2008 Jul; 33(16):1731-8. PubMed ID: 18628705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sheep lumbar intervertebral discs as models for human discs.
    Reid JE; Meakin JR; Robins SP; Skakle JM; Hukins DW
    Clin Biomech (Bristol); 2002 May; 17(4):312-4. PubMed ID: 12034126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus.
    Schmidt TA; An HS; Lim TH; Nowicki BH; Haughton VM
    Spine (Phila Pa 1976); 1998 Oct; 23(20):2167-73. PubMed ID: 9802156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.