These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12135650)

  • 1. A computer system for acoustic analysis of pathological voices and laryngeal diseases screening.
    Hadjitodorov S; Mitev P
    Med Eng Phys; 2002 Jul; 24(6):419-29. PubMed ID: 12135650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.
    Uloza V; Padervinskis E; Uloziene I; Saferis V; Verikas A
    J Voice; 2015 Sep; 29(5):552-9. PubMed ID: 25795349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for turbulent noise estimation in voiced signals.
    Mitev P; Hadjitodorov S
    Med Biol Eng Comput; 2000 Nov; 38(6):625-31. PubMed ID: 11217879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice outcomes after transoral laser microsurgery for early glottic cancer-considering signal type and smoothed cepstral peak prominence.
    Stone D; McCabe P; Palme CE; Heard R; Eastwood C; Riffat F; Madill C
    J Voice; 2015 May; 29(3):370-81. PubMed ID: 25301299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of the glottal to noise excitation ratio for the screening of voice disorders.
    Godino-Llorente JI; Osma-Ruiz V; Sáenz-Lechón N; Gómez-Vilda P; Blanco-Velasco M; Cruz-Roldán F
    J Voice; 2010 Jan; 24(1):47-56. PubMed ID: 19135854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of Acoustic Analysis Measurements in the Evaluation of Patients With Different Laryngeal Diagnoses.
    Lopes LW; Batista Simões L; Delfino da Silva J; da Silva Evangelista D; da Nóbrega E Ugulino AC; Oliveira Costa Silva P; Jefferson Dias Vieira V
    J Voice; 2017 May; 31(3):382.e15-382.e26. PubMed ID: 27742492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathological likelihood index as a measurement of the degree of voice normality and perceived hoarseness.
    Godino-Llorente JI; Gómez-Vilda P; Cruz-Roldán F; Blanco-Velasco M; Fraile R
    J Voice; 2010 Nov; 24(6):667-77. PubMed ID: 20207107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of Voice Acoustic Parameters in Iranian Female Teachers.
    Mohseni R; Sandoughdar N
    J Voice; 2016 Jul; 30(4):507.e1-5. PubMed ID: 26275636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating voice evaluation: correlation between acoustic and audio-perceptual measures.
    Vaz Freitas S; Melo Pestana P; Almeida V; Ferreira A
    J Voice; 2015 May; 29(3):390.e1-7. PubMed ID: 25619471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparameter voice assessment for voice disorder patients: a correlation analysis between objective and subjective parameters.
    Ziwei Y; Zheng P; Pin D
    J Voice; 2014 Nov; 28(6):770-4. PubMed ID: 24972535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral noise estimation in the evaluation of pathological voice.
    Murphy PJ
    Logoped Phoniatr Vocol; 2006; 31(4):182-9. PubMed ID: 17114131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laryngeal perturbation analysis: minimum length of analysis window.
    Karnell MP
    J Speech Hear Res; 1991 Jun; 34(3):544-8. PubMed ID: 2072678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic fidelity of internet bandwidths for measures used in speech and voice disorders.
    Xue SA; Lower A
    J Acoust Soc Am; 2010 Sep; 128(3):1366-76. PubMed ID: 20815471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vocal clarity of female speech-language pathology students: an exploratory study.
    Warhurst S; Madill C; McCabe P; Heard R; Yiu E
    J Voice; 2012 Jan; 26(1):63-8. PubMed ID: 21439779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and combination of acoustic features for the description of pathologic voices.
    Michaelis D; Fröhlich M; Strube HW
    J Acoust Soc Am; 1998 Mar; 103(3):1628-39. PubMed ID: 9514027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal Ambient Noise Levels and Type of Voice Material Required for Valid Use of Smartphones in Clinical Voice Research.
    Lebacq J; Schoentgen J; Cantarella G; Bruss FT; Manfredi C; DeJonckere P
    J Voice; 2017 Sep; 31(5):550-556. PubMed ID: 28320627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.
    Uloza V; Padervinskis E; Vegiene A; Pribuisiene R; Saferis V; Vaiciukynas E; Gelzinis A; Verikas A
    Eur Arch Otorhinolaryngol; 2015 Nov; 272(11):3391-9. PubMed ID: 26162450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.