BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12136039)

  • 1. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies.
    Archer S; Michelakis E
    News Physiol Sci; 2002 Aug; 17():131-7. PubMed ID: 12136039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing.
    Michelakis ED; Archer SL; Weir EK
    Physiol Res; 1995; 44(6):361-7. PubMed ID: 8798271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple sites of oxygen sensing and their contributions to hypoxic pulmonary vasoconstriction.
    Gurney AM
    Respir Physiol Neurobiol; 2002 Aug; 132(1):43-53. PubMed ID: 12126694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of O(2)-sensitive K(+) and Ca(2+) channels in the regulation of the pulmonary circulation: potential role of caveolae and implications for high altitude pulmonary edema.
    Murray F; Insel PA; Yuan JX
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):192-208. PubMed ID: 16364695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis.
    Nagendran J; Stewart K; Hoskinson M; Archer SL
    Curr Opin Anaesthesiol; 2006 Feb; 19(1):34-43. PubMed ID: 16547431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion channels, oxygen sensation and signal transduction in pulmonary arterial smooth muscle.
    Kozlowski RZ
    Cardiovasc Res; 1995 Sep; 30(3):318-25. PubMed ID: 7585821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O(2) sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens.
    Waypa GB; Schumacker PT
    Respir Physiol Neurobiol; 2002 Aug; 132(1):81-91. PubMed ID: 12126697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
    Dunham-Snary KJ; Wu D; Sykes EA; Thakrar A; Parlow LRG; Mewburn JD; Parlow JL; Archer SL
    Chest; 2017 Jan; 151(1):181-192. PubMed ID: 27645688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redox-based O2 sensor in rat pulmonary vasculature.
    Archer SL; Huang J; Henry T; Peterson D; Weir EK
    Circ Res; 1993 Dec; 73(6):1100-12. PubMed ID: 8222081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
    Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED
    Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role for kv3.1b channels as oxygen sensors.
    Osipenko ON; Tate RJ; Gurney AM
    Circ Res; 2000 Mar; 86(5):534-40. PubMed ID: 10720415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of K+ channels in pulmonary hypertension.
    Mandegar M; Yuan JX
    Vascul Pharmacol; 2002 Jan; 38(1):25-33. PubMed ID: 12378819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
    Dunham-Snary KJ; Hong ZG; Xiong PY; Del Paggio JC; Herr JE; Johri AM; Archer SL
    Pflugers Arch; 2016 Jan; 468(1):43-58. PubMed ID: 26395471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
    Moudgil R; Michelakis ED; Archer SL
    Microcirculation; 2006 Dec; 13(8):615-32. PubMed ID: 17085423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca(2+) stores and the endothelium.
    Evans AM; Dipp M
    Respir Physiol Neurobiol; 2002 Aug; 132(1):3-15. PubMed ID: 12126692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension.
    Bonnet S; Archer SL
    Pharmacol Ther; 2007 Jul; 115(1):56-69. PubMed ID: 17583356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.