These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 12136127)

  • 1. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity.
    Shouval HZ; Bear MF; Cooper LN
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10831-6. PubMed ID: 12136127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-timing-dependent synaptic plasticity depends on dendritic location.
    Froemke RC; Poo MM; Dan Y
    Nature; 2005 Mar; 434(7030):221-5. PubMed ID: 15759002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity.
    Williams JM; Guévremont D; Kennard JT; Mason-Parker SE; Tate WP; Abraham WC
    Neuroscience; 2003; 118(4):1003-13. PubMed ID: 12732245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional synaptic plasticity induced by conditioned stimulations with different number of pulse at hippocampal CA1 synapses: roles of N-methyl-D-aspartate and metabotropic glutamate receptors.
    Hsu JC; Cheng SJ; Yang HW; Wang HJ; Chiu TH; Min MY; Lin YW
    Synapse; 2011 Aug; 65(8):795-803. PubMed ID: 21218453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
    Campanac E; Debanne D
    J Physiol; 2008 Feb; 586(3):779-93. PubMed ID: 18048448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the glycine site of the N-methyl-D-aspartate receptor in synaptic plasticity induced by pairing.
    Krasteniakov NV; Martina M; Bergeron R
    Eur J Neurosci; 2005 May; 21(10):2782-92. PubMed ID: 15926925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
    Andrade-Talavera Y; Duque-Feria P; Paulsen O; Rodríguez-Moreno A
    Cereb Cortex; 2016 Aug; 26(8):3637-3654. PubMed ID: 27282393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic plasticity, metaplasticity and BCM theory.
    Jedlicka P
    Bratisl Lek Listy; 2002; 103(4-5):137-43. PubMed ID: 12413200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient synaptic potentiation in the visual cortex. I. Cellular mechanisms.
    Harsanyi K; Friedlander MJ
    J Neurophysiol; 1997 Mar; 77(3):1269-83. PubMed ID: 9084595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses.
    Sjöström PJ; Turrigiano GG; Nelson SB
    Neuropharmacology; 2007 Jan; 52(1):176-84. PubMed ID: 16895733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo.
    Chu CP; Zhao GY; Jin R; Zhao SN; Sun L; Qiu DL
    Eur J Neurosci; 2014 May; 39(10):1624-31. PubMed ID: 24666426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures.
    Debanne D; Gähwiler BH; Thompson SM
    J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):237-47. PubMed ID: 9490845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex.
    Yoshimura Y; Ohmura T; Komatsu Y
    J Neurosci; 2003 Jul; 23(16):6557-66. PubMed ID: 12878697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro.
    Wiegert O; Pu Z; Shor S; Joëls M; Krugers H
    Neuroscience; 2005; 135(2):403-11. PubMed ID: 16125856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors.
    Mapelli J; Gandolfi D; Vilella A; Zoli M; Bigiani A
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9898-903. PubMed ID: 27531957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complementary nature of long-term depression and potentiation revealed by dual component excitatory postsynaptic potentials in hippocampal slices from young rats.
    Xiao MY; Karpefors M; Niu YP; Wigström H
    Neuroscience; 1995 Oct; 68(3):625-35. PubMed ID: 8577363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.