These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12136138)

  • 1. Application of direct methods to protein crystallographic phase extension.
    Jiang F
    Acta Crystallogr D Biol Crystallogr; 2002 Aug; 58(Pt 8):1277-81. PubMed ID: 12136138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CrystTwiV: a webserver for automated phase extension and refinement in X-ray crystallography.
    Thireou T; Atlamazoglou V; Levakis M; Eliopoulos E; Hountas A; Tsoucaris G; Bethanis K
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W718-22. PubMed ID: 17488848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case study on the treatment of protein SIRAS data.
    Yao D; Zhang T; He Y; Han P; Cherney M; Gu Y; Cygler M; Fan H
    Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2686-91. PubMed ID: 25286852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasing methods for protein crystallography.
    Hauptman H
    Curr Opin Struct Biol; 1997 Oct; 7(5):672-80. PubMed ID: 9345626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining direct methods with isomorphous replacement or anomalous scattering data. VIII. Phasing experimental SIR data with the replacing atoms in a centrosymmetric arrangement.
    Liu YD; Gu YX; Zheng CD; Hao Q; Fan HF
    Acta Crystallogr D Biol Crystallogr; 1999 Apr; 55(Pt 4):846-8. PubMed ID: 10089315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-ligand interaction probed by time-resolved crystallography.
    Schmidt M; Ihee H; Pahl R; Srajer V
    Methods Mol Biol; 2005; 305():115-54. PubMed ID: 15939996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New developments in phase refinement.
    Abrahams JP; De Graaff RA
    Curr Opin Struct Biol; 1998 Oct; 8(5):601-5. PubMed ID: 9818264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Resolution Refinement of Atomic Models Against Crystallographic Data.
    Nicholls RA; Kovalevskiy O; Murshudov GN
    Methods Mol Biol; 2017; 1607():565-593. PubMed ID: 28573589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative projection algorithms in protein crystallography. II. Application.
    Lo VL; Kingston RL; Millane RP
    Acta Crystallogr A Found Adv; 2015 Jul; 71(Pt 4):451-9. PubMed ID: 26131900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substructure determination in multiwavelength anomalous diffraction, single anomalous diffraction, and single isomorphous replacement with anomalous scattering data using Shake-and-Bake.
    Smith GD; Lemke CT; Howell PL
    Methods Mol Biol; 2007; 364():183-96. PubMed ID: 17172766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.
    DiMaio F
    Methods Mol Biol; 2017; 1607():455-466. PubMed ID: 28573585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the error term in direct-method SAD phasing.
    Wang JW; Chen JR; Gu YX; Zheng CD; Jiang F; Fan HF
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1987-90. PubMed ID: 15502306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending the resolution and phase-quality limits in automated model building with iterative refinement.
    Skubák P; Ness S; Pannu NS
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1626-35. PubMed ID: 16301796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure Refinement at Atomic Resolution.
    Jaskolski M
    Methods Mol Biol; 2017; 1607():549-563. PubMed ID: 28573588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview and new developments in softer X-ray (2A < lambda < 5A) protein crystallography.
    Helliwell JR
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):1-3. PubMed ID: 14646119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical transition of myoglobin in a crystal: comparative studies of X-ray crystallography and Mössbauer spectroscopy.
    Chong SH; Joti Y; Kidera A; Go N; Ostermann A; Gassmann A; Parak F
    Eur Biophys J; 2001 Sep; 30(5):319-29. PubMed ID: 11592689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of direct methods in protein crystallography for dealing with diffraction data down to 5 Å resolution.
    Fan H; Gu Y; He Y; Lin Z; Wang J; Yao D; Zhang T
    Acta Crystallogr A Found Adv; 2014 May; 70(Pt 3):239-47. PubMed ID: 24815973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy among phase-refinement techniques in macromolecular crystallography.
    Burla MC; Cascarano GL; Giacovazzo C; Polidori G
    Acta Crystallogr D Struct Biol; 2017 Nov; 73(Pt 11):877-888. PubMed ID: 29095160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of hierarchical cluster analysis to the selection of isomorphous crystals.
    Giordano R; Leal RM; Bourenkov GP; McSweeney S; Popov AN
    Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):649-58. PubMed ID: 22683787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of multivariate statistical techniques improves single-wavelength anomalous diffraction phasing.
    Pannu NS; Read RJ
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):22-7. PubMed ID: 14684888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.