These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12137392)

  • 1. Crystal structure of 5-t-butoxycarbonyl-1-benzoyl-2-pyrrolidinone, an intermediate in the synthesis of (-)-rolipram.
    Covarrubias-Zúñiga A; Zúñiga-Villarreal N; Toscano RA
    Anal Sci; 2002 Jul; 18(7):859-60. PubMed ID: 12137392
    [No Abstract]   [Full Text] [Related]  

  • 2. First highly regio- and diastereoselective [3+2] cycloaddition of chiral nonracemic Fischer carbene complexes with azomethine ylides: an enantioselective synthesis of (+)-rolipram.
    Barluenga J; Fernández-Rodríguez MA; Aguilar E; Fernández-Marí F; Salinas A; Olano B
    Chemistry; 2001 Aug; 7(16):3533-44. PubMed ID: 11560324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma-lactam synthesis via C-H insertion: elaboration of N-benzyl protecting groups for high regioselectivity toward the total synthesis of rolipram.
    Yoon CH; Nagle A; Chen C; Gandhi D; Jung KW
    Org Lett; 2003 Jun; 5(13):2259-62. PubMed ID: 12816423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 4-aryl-2-pyrrolidones and beta-aryl-gamma-amino-butyric acid (GABA) analogues by Heck arylation of 3-pyrrolines with arenediazonium tetrafluoroborates. Synthesis of (+/-)-rolipram on a multigram scale and chromatographic resolution by semipreparative chiral simulated moving bed chromatography.
    Garcia AL; Carpes MJ; de Oca AC; dos Santos MA; Santana CC; Correia CR
    J Org Chem; 2005 Feb; 70(3):1050-3. PubMed ID: 15675868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a catalytic enantioselective conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes for the synthesis of endothelin-A antagonist ABT-546. Scope, mechanism, and further application to the synthesis of the antidepressant rolipram.
    Barnes DM; Ji J; Fickes MG; Fitzgerald MA; King SA; Morton HE; Plagge FA; Preskill M; Wagaw SH; Wittenberger SJ; Zhang J
    J Am Chem Soc; 2002 Nov; 124(44):13097-105. PubMed ID: 12405837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-independent phosphodiesterase inhibitors as putative antidepressants: [3-(bicycloalkyloxy)-4-methoxyphenyl]-2-imidazolidinones.
    Saccomano NA; Vinick FJ; Koe BK; Nielsen JA; Whalen WM; Meltz M; Phillips D; Thadieo PF; Jung S; Chapin DS
    J Med Chem; 1991 Jan; 34(1):291-8. PubMed ID: 1992129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro and in-vivo characterisation of two sustained release formulations for the antidepressant rolipram.
    Pfeffer M; Sauerbrey N; Windt-Hanke F; Krause W
    Arzneimittelforschung; 1990 Nov; 40(11):1191-4. PubMed ID: 2085329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organocatalytic asymmetric total synthesis of (R)-rolipram and formal synthesis of (3S,4R)-paroxetine.
    Hynes PS; Stupple PA; Dixon DJ
    Org Lett; 2008 Apr; 10(7):1389-91. PubMed ID: 18324820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts.
    Tsubogo T; Oyamada H; Kobayashi S
    Nature; 2015 Apr; 520(7547):329-32. PubMed ID: 25877201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striking effect of hydroxamic acid substitution on the phosphodiesterase type 4 (PDE4) and TNF alpha inhibitory activity of two series of rolipram analogues: implications for a new active site model of PDE4.
    Kleinman EF; Campbell E; Giordano LA; Cohan VL; Jenkinson TH; Cheng JB; Shirley JT; Pettipher ER; Salter ED; Hibbs TA; DiCapua FM; Bordner J
    J Med Chem; 1998 Jan; 41(3):266-70. PubMed ID: 9464356
    [No Abstract]   [Full Text] [Related]