These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12137510)

  • 1. Reactions of methane monooxygenase intermediate Q with derivatized methanes.
    Ambundo EA; Friesner RA; Lippard SJ
    J Am Chem Soc; 2002 Jul; 124(30):8770-1. PubMed ID: 12137510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopped-flow Fourier transform infrared spectroscopy of nitromethane oxidation by the diiron(IV) intermediate of methane monooxygenase.
    Muthusamy M; Ambundo EA; George SJ; Lippard SJ; Thorneley RN
    J Am Chem Soc; 2003 Sep; 125(37):11150-1. PubMed ID: 16220908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects.
    Wilkins PC; Dalton H; Samuel CJ; Green J
    Eur J Biochem; 1994 Dec; 226(2):555-60. PubMed ID: 8001570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of the diiron(IV) intermediate Q in soluble methane monooxygenase with fluoromethanes.
    Beauvais LG; Lippard SJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):262-6. PubMed ID: 16176805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for C-H bond cleavage in a reaction cycle intermediate.
    Nesheim JC; Lipscomb JD
    Biochemistry; 1996 Aug; 35(31):10240-7. PubMed ID: 8756490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate hydroxylation in methane monooxygenase: quantitative modeling via mixed quantum mechanics/molecular mechanics techniques.
    Gherman BF; Lippard SJ; Friesner RA
    J Am Chem Soc; 2005 Jan; 127(3):1025-37. PubMed ID: 15656641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates.
    Brazeau BJ; Lipscomb JD
    Biochemistry; 2000 Nov; 39(44):13503-15. PubMed ID: 11063587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of CO-binding cytochrome c in enzymatic oxidation of methane by the bacterium Methylococcus capsulatus].
    Gvozdev RI; Nikonova EL; Piliashenko-Novokhatnyi AI; Shushenacheva EV; Grigorian AN
    Biokhimiia; 1982 Jul; 47(7):1118-24. PubMed ID: 6288124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen kinetic isotope effects in soluble methane monooxygenase.
    Stahl SS; Francisco WA; Merkx M; Klinman JP; Lippard SJ
    J Biol Chem; 2001 Feb; 276(7):4549-53. PubMed ID: 11073959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers.
    Beauvais LG; Lippard SJ
    J Am Chem Soc; 2005 May; 127(20):7370-8. PubMed ID: 15898785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane.
    Lieberman RL; Rosenzweig AC
    Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms.
    Tinberg CE; Lippard SJ
    Biochemistry; 2010 Sep; 49(36):7902-12. PubMed ID: 20681546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway.
    Tinberg CE; Lippard SJ
    Biochemistry; 2009 Dec; 48(51):12145-58. PubMed ID: 19921958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-dependent H/D kinetic isotope effects and the role of the di(μ-oxo)diiron(IV) core in soluble methane monooxygenase: a theoretical study.
    Mai BK; Kim Y
    Chemistry; 2014 May; 20(21):6532-41. PubMed ID: 24715359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath).
    Kitmitto A; Myronova N; Basu P; Dalton H
    Biochemistry; 2005 Aug; 44(33):10954-65. PubMed ID: 16101279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath).
    Myronova N; Kitmitto A; Collins RF; Miyaji A; Dalton H
    Biochemistry; 2006 Oct; 45(39):11905-14. PubMed ID: 17002291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of deuterated compounds by high specific activity methane monooxygenase from Methylosinus trichosporium. Mechanistic implications.
    Rataj MJ; Kauth JE; Donnelly MI
    J Biol Chem; 1991 Oct; 266(28):18684-90. PubMed ID: 1917992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).
    Green J; Dalton H
    Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.