These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12137990)

  • 1. Treatment of creosote-contaminated groundwater in a peat/sand permeable barrier--a column study.
    Rasmussen G; Fremmersvik G; Olsen RA
    J Hazard Mater; 2002 Aug; 93(3):285-306. PubMed ID: 12137990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters.
    Kalmykova Y; Moona N; Strömvall AM; Björklund K
    Water Res; 2014 Jun; 56():246-57. PubMed ID: 24686091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.
    Kulik N; Goi A; Trapido M; Tuhkanen T
    J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of vegetable oil in a pilot-scale denitrifying barrier.
    Hunter WJ
    J Contam Hydrol; 2001 Dec; 53(1-2):119-31. PubMed ID: 11816990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory study of creosote removal from sand at elevated temperatures.
    Hicknell BN; Mumford KG; Kueper BH
    J Contam Hydrol; 2018 Dec; 219():40-49. PubMed ID: 30396790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment.
    Mueller JG; Middaugh DP; Lantz SE; Chapman PJ
    Appl Environ Microbiol; 1991 May; 57(5):1277-85. PubMed ID: 1854192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of modified Fenton's reaction on microbial activity and removal of PAHs in creosote oil contaminated soil.
    Palmroth MR; Langwaldt JH; Aunola TA; Goi A; Münster U; Puhakka JA; Tuhkanen TA
    Biodegradation; 2006 Mar; 17(2):131-41. PubMed ID: 16456613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioassay-directed identification of toxic organic compounds in creosote-contaminated groundwater.
    Hartnik T; Norli HR; Eggen T; Breedveld GD
    Chemosphere; 2007 Jan; 66(3):435-43. PubMed ID: 16872665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site.
    Breedveld GD; Sparrevik M
    Biodegradation; 2000; 11(6):391-9. PubMed ID: 11587443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of hydrocarbons in old creosote contaminated soil using headspace solid phase microextraction and GC-MS.
    Eriksson M; Fäldt J; Dalhammar G; Borg-Karlson AK
    Chemosphere; 2001 Sep; 44(7):1641-8. PubMed ID: 11545529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater.
    Kong X; Bi E; Liu F; Huang G; Ma J
    Environ Technol; 2015; 36(9-12):1433-40. PubMed ID: 25428576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil.
    Atagana HI; Haynes RJ; Wallis FM
    Biodegradation; 2003 Aug; 14(4):297-307. PubMed ID: 12948059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site.
    Eriksson M; Dalhammar G; Borg-Karlson AK
    Appl Microbiol Biotechnol; 2000 May; 53(5):619-26. PubMed ID: 10855726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix-immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater.
    Wiles MC; Huebner HJ; McDonald TJ; Donnelly KC; Phillips TD
    Chemosphere; 2005 Jun; 59(10):1455-64. PubMed ID: 15876388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote-comtaminated soil.
    Valderrama C; Alessandri R; Aunola T; Cortina JL; Gamisans X; Tuhkanen T
    J Hazard Mater; 2009 Jul; 166(2-3):594-602. PubMed ID: 19135785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.
    Niqui-Arroyo JL; Ortega-Calvo JJ
    J Environ Qual; 2007; 36(5):1444-51. PubMed ID: 17766823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.
    Hyun S; Jafvert CT; Lee LS; Rao PS
    Chemosphere; 2006 Jun; 63(10):1621-31. PubMed ID: 16337673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetically enhanced bioremediation of creosote-contaminated soil: laboratory and field studies.
    Suni S; Malinen E; Kosonen J; Silvennoinen H; Romantschuk M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):277-87. PubMed ID: 17365294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.