These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 12138097)

  • 1. Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity.
    Litowski JR; Hodges RS
    J Biol Chem; 2002 Oct; 277(40):37272-9. PubMed ID: 12138097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing heterodimeric two-stranded alpha-helical coiled-coils: the effect of chain length on protein folding, stability and specificity.
    Litowski JR; Hodges RS
    J Pept Res; 2001 Dec; 58(6):477-92. PubMed ID: 12005418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability.
    Lu SM; Hodges RS
    Protein Sci; 2004 Mar; 13(3):714-26. PubMed ID: 14978309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding.
    De Crescenzo G; Litowski JR; Hodges RS; O'Connor-McCourt MD
    Biochemistry; 2003 Feb; 42(6):1754-63. PubMed ID: 12578390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Pept Sci; 1997; 3(3):209-23. PubMed ID: 9230486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of interhelical electrostatic repulsions between glutamic acid residues in controlling the dimerization and stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Monera OD; Kay CM; Hodges RS
    J Biol Chem; 1995 Oct; 270(43):25495-506. PubMed ID: 7592719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled formation of model homo- and heterodimer coiled coil polypeptides.
    Graddis TJ; Myszka DG; Chaiken IM
    Biochemistry; 1993 Nov; 32(47):12664-71. PubMed ID: 8251485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering of large hydrophobes in the hydrophobic core of two-stranded alpha-helical coiled-coils controls protein folding and stability.
    Kwok SC; Hodges RS
    J Biol Chem; 2003 Sep; 278(37):35248-54. PubMed ID: 12842878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of buried lysine and surface polar residues in a designed heterodimeric coiled coil.
    Campbell KM; Lumb KJ
    Biochemistry; 2002 Jun; 41(22):7169-75. PubMed ID: 12033951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability.
    Zhou NE; Kay CM; Hodges RS
    Protein Eng; 1994 Nov; 7(11):1365-72. PubMed ID: 7700868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A.
    Chana M; Tripet BP; Mant CT; Hodges RS
    J Struct Biol; 2002; 137(1-2):206-19. PubMed ID: 12064947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils.
    Su JY; Hodges RS; Kay CM
    Biochemistry; 1994 Dec; 33(51):15501-10. PubMed ID: 7803412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique stabilizing interactions identified in the two-stranded alpha-helical coiled-coil: crystal structure of a cortexillin I/GCN4 hybrid coiled-coil peptide.
    Lee DL; Ivaninskii S; Burkhard P; Hodges RS
    Protein Sci; 2003 Jul; 12(7):1395-405. PubMed ID: 12824486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Mol Biol; 1998 Nov; 283(5):993-1012. PubMed ID: 9799639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.