BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12138129)

  • 21. Molecular mechanisms of Bartter syndrome caused by mutations in the BSND gene.
    Hayama A; Rai T; Sasaki S; Uchida S
    Histochem Cell Biol; 2003 Jun; 119(6):485-93. PubMed ID: 12761627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two highly homologous members of the ClC chloride channel family in both rat and human kidney.
    Kieferle S; Fong P; Bens M; Vandewalle A; Jentsch TJ
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6943-7. PubMed ID: 8041726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impairment in renal medulla development underlies salt wasting in Clc-k2 channel deficiency.
    Lin MH; Chen JC; Tian X; Lee CM; Yu IS; Lo YF; Uchida S; Huang CL; Chen BC; Cheng CJ
    JCI Insight; 2021 Oct; 6(20):. PubMed ID: 34499620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance.
    Krämer BK; Bergler T; Stoelcker B; Waldegger S
    Nat Clin Pract Nephrol; 2008 Jan; 4(1):38-46. PubMed ID: 18094726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of chloride channel CLC-K2 mRNA in the renal medulla of Dahl salt-sensitive rats.
    Castrop H; Krämer BK; Riegger GA; Kurtz A; Wolf K
    J Hypertens; 2000 Sep; 18(9):1289-95. PubMed ID: 10994760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cytoplasmic domain mutation in ClC-Kb affects long-distance communication across the membrane.
    Martinez GQ; Maduke M
    PLoS One; 2008 Jul; 3(7):e2746. PubMed ID: 18648499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension.
    Jeck N; Waldegger S; Lampert A; Boehmer C; Waldegger P; Lang PA; Wissinger B; Friedrich B; Risler T; Moehle R; Lang UE; Zill P; Bondy B; Schaeffeler E; Asante-Poku S; Seyberth H; Schwab M; Lang F
    Hypertension; 2004 Jun; 43(6):1175-81. PubMed ID: 15148291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal Chloride Channels in Relation to Sodium Chloride Transport.
    Teulon J; Planelles G; Sepúlveda FV; Andrini O; Lourdel S; Paulais M
    Compr Physiol; 2018 Dec; 9(1):301-342. PubMed ID: 30549019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New perspective of ClC-Kb/2 Cl- channel physiology in the distal renal tubule.
    Zaika O; Tomilin V; Mamenko M; Bhalla V; Pochynyuk O
    Am J Physiol Renal Physiol; 2016 May; 310(10):F923-30. PubMed ID: 26792067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
    Gradogna A; Fenollar-Ferrer C; Forrest LR; Pusch M
    J Gen Physiol; 2012 Dec; 140(6):681-96. PubMed ID: 23148261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and structural analysis of ClC-K chloride channels involved in renal disease.
    Waldegger S; Jentsch TJ
    J Biol Chem; 2000 Aug; 275(32):24527-33. PubMed ID: 10831588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.
    Pinelli L; Nissant A; Edwards A; Lourdel S; Teulon J; Paulais M
    J Gen Physiol; 2016 Sep; 148(3):213-26. PubMed ID: 27574292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small Molecules Targeting Kidney ClC-K Chloride Channels: Applications in Rare Tubulopathies and Common Cardiovascular Diseases.
    Coppola MA; Pusch M; Imbrici P; Liantonio A
    Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice.
    Rio C; Dikkes P; Liberman MC; Corfas G
    J Comp Neurol; 2002 Jan; 442(2):156-62. PubMed ID: 11754168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop disorders: insights derived from defined genotypes.
    Jeck N; Seyberth HW
    Nephron Physiol; 2011; 118(1):p7-14. PubMed ID: 21071987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1.
    Uchida S; Sasaki S; Nitta K; Uchida K; Horita S; Nihei H; Marumo F
    J Clin Invest; 1995 Jan; 95(1):104-13. PubMed ID: 7814604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney.
    Miyazaki H; Kaneko T; Uchida S; Sasaki S; Takei Y
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15782-7. PubMed ID: 12427972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation and analyses of R8L barttin knockin mouse.
    Nomura N; Tajima M; Sugawara N; Morimoto T; Kondo Y; Ohno M; Uchida K; Mutig K; Bachmann S; Soleimani M; Ohta E; Ohta A; Sohara E; Okado T; Rai T; Jentsch TJ; Sasaki S; Uchida S
    Am J Physiol Renal Physiol; 2011 Aug; 301(2):F297-307. PubMed ID: 21593186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of CLC-K chloride channels in the rat cochlea.
    Qu C; Liang F; Hu W; Shen Z; Spicer SS; Schulte BA
    Hear Res; 2006 Mar; 213(1-2):79-87. PubMed ID: 16466872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.
    Vandewalle A
    Chang Gung Med J; 2007; 30(1):17-25. PubMed ID: 17477025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.