BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12138203)

  • 1. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage.
    Reardon JT; Sancar A
    Mol Cell Biol; 2002 Aug; 22(16):5938-45. PubMed ID: 12138203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors.
    Evans E; Moggs JG; Hwang JR; Egly JM; Wood RD
    EMBO J; 1997 Nov; 16(21):6559-73. PubMed ID: 9351836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Order of assembly of human DNA repair excision nuclease.
    Wakasugi M; Sancar A
    J Biol Chem; 1999 Jun; 274(26):18759-68. PubMed ID: 10373492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel functional interactions between nucleotide excision DNA repair proteins influencing the enzymatic activities of TFIIH, XPG, and ERCC1-XPF.
    Winkler GS; Sugasawa K; Eker AP; de Laat WL; Hoeijmakers JH
    Biochemistry; 2001 Jan; 40(1):160-5. PubMed ID: 11141066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.
    Zhu Q; Wani G; Sharma N; Wani A
    DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair.
    Kim J; Li CL; Chen X; Cui Y; Golebiowski FM; Wang H; Hanaoka F; Sugasawa K; Yang W
    Nature; 2023 May; 617(7959):170-175. PubMed ID: 37076618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome.
    Araújo SJ; Nigg EA; Wood RD
    Mol Cell Biol; 2001 Apr; 21(7):2281-91. PubMed ID: 11259578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein.
    Iyer N; Reagan MS; Wu KJ; Canagarajah B; Friedberg EC
    Biochemistry; 1996 Feb; 35(7):2157-67. PubMed ID: 8652557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors.
    Tapias A; Auriol J; Forget D; Enzlin JH; Schärer OD; Coin F; Coulombe B; Egly JM
    J Biol Chem; 2004 Apr; 279(18):19074-83. PubMed ID: 14981083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks.
    Thoma BS; Wakasugi M; Christensen J; Reddy MC; Vasquez KM
    Nucleic Acids Res; 2005; 33(9):2993-3001. PubMed ID: 15914671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor.
    Park CH; Mu D; Reardon JT; Sancar A
    J Biol Chem; 1995 Mar; 270(9):4896-902. PubMed ID: 7876263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK.
    Araújo SJ; Tirode F; Coin F; Pospiech H; Syväoja JE; Stucki M; Hübscher U; Egly JM; Wood RD
    Genes Dev; 2000 Feb; 14(3):349-59. PubMed ID: 10673506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair.
    Winkler GS; Araújo SJ; Fiedler U; Vermeulen W; Coin F; Egly JM; Hoeijmakers JH; Wood RD; Timmers HT; Weeda G
    J Biol Chem; 2000 Feb; 275(6):4258-66. PubMed ID: 10660593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H.
    Nocentini S; Coin F; Saijo M; Tanaka K; Egly JM
    J Biol Chem; 1997 Sep; 272(37):22991-4. PubMed ID: 9287294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of human DNA repair excision nuclease.
    Mu D; Hsu DS; Sancar A
    J Biol Chem; 1996 Apr; 271(14):8285-94. PubMed ID: 8626523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical analysis of the damage recognition process in nucleotide excision repair.
    You JS; Wang M; Lee SH
    J Biol Chem; 2003 Feb; 278(9):7476-85. PubMed ID: 12486030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy.
    Boyle J; Ueda T; Oh KS; Imoto K; Tamura D; Jagdeo J; Khan SG; Nadem C; Digiovanna JJ; Kraemer KH
    Hum Mutat; 2008 Oct; 29(10):1194-208. PubMed ID: 18470933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II.
    Drapkin R; Reardon JT; Ansari A; Huang JC; Zawel L; Ahn K; Sancar A; Reinberg D
    Nature; 1994 Apr; 368(6473):769-72. PubMed ID: 8152490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA.
    Yokoi M; Masutani C; Maekawa T; Sugasawa K; Ohkuma Y; Hanaoka F
    J Biol Chem; 2000 Mar; 275(13):9870-5. PubMed ID: 10734143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage recognition during nucleotide excision repair in mammalian cells.
    Wood RD
    Biochimie; 1999; 81(1-2):39-44. PubMed ID: 10214908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.