These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12138623)

  • 1. Development of vaccines against sea lice.
    Raynard RS; Bricknell IR; Billingsley PF; Nisbet AJ; Vigneau A; Sommerville C
    Pest Manag Sci; 2002 Jun; 58(6):569-75. PubMed ID: 12138623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sea louse control in Scotland, past and present.
    Rae GH
    Pest Manag Sci; 2002 Jun; 58(6):515-20. PubMed ID: 12138617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel gene isolated from Caligus rogercresseyi: a promising target for vaccine development against sea lice.
    Carpio Y; Basabe L; Acosta J; Rodríguez A; Mendoza A; Lisperger A; Zamorano E; González M; Rivas M; Contreras S; Haussmann D; Figueroa J; Osorio VN; Asencio G; Mancilla J; Ritchie G; Borroto C; Estrada MP
    Vaccine; 2011 Mar; 29(15):2810-20. PubMed ID: 21320542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards selective breeding of Atlantic salmon for sea louse resistance: approaches to identify trait markers.
    Jones CS; Lockyer AE; Verspoor E; Secombes CJ; Noble LR
    Pest Manag Sci; 2002 Jun; 58(6):559-68. PubMed ID: 12138622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal, environmental and management factors influencing the epidemiological patterns of sea lice (Lepeophtheirus salmonis) infestations on farmed Atlantic salmon (Salmo salar) in Scotland.
    Revie CW; Gettinby G; Treasurer JW; Rae GH; Clark N
    Pest Manag Sci; 2002 Jun; 58(6):576-84. PubMed ID: 12138624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecology of sea lice parasitic on farmed and wild fish.
    Costello MJ
    Trends Parasitol; 2006 Oct; 22(10):475-83. PubMed ID: 16920027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using observed load distributions with a simple model to analyse the epidemiology of sea lice (Lepeophtheirus salmonis) on sea trout (Salmo trutta).
    Murray AG
    Pest Manag Sci; 2002 Jun; 58(6):585-94. PubMed ID: 12138625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the susceptibility of sea lice infection in Atlantic salmon.
    Mustafa A; Piasecki W
    Wiad Parazytol; 2005; 51(4):281-5. PubMed ID: 16913500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Akirins in sea lice: first steps towards a deeper understanding.
    Carpio Y; García C; Pons T; Haussmann D; Rodríguez-Ramos T; Basabe L; Acosta J; Estrada MP
    Exp Parasitol; 2013 Oct; 135(2):188-99. PubMed ID: 23850998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wild salmonids and sea louse infestations on the west coast of Scotland: sources of infection and implications for the management of marine salmon farms.
    Butler JR
    Pest Manag Sci; 2002 Jun; 58(6):595-608; discussion 622-9. PubMed ID: 12138626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids.
    Wagner GN; Fast MD; Johnson SC
    Trends Parasitol; 2008 Apr; 24(4):176-83. PubMed ID: 18329341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar).
    Fast MD; Muise DM; Easy RE; Ross NW; Johnson SC
    Fish Shellfish Immunol; 2006 Sep; 21(3):228-41. PubMed ID: 16483797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical cues of male sea lice Lepeophtheirus salmonis encourage others to move between host Atlantic salmon Salmo salar.
    Stephenson JF
    J Fish Biol; 2012 Aug; 81(3):1118-23. PubMed ID: 22880742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a candidate vaccine on the dynamics of salmon lice (Lepeophtheirus salmonis) infestation and immune response in Atlantic salmon (Salmo salar L.).
    Swain JK; Carpio Y; Johansen LH; Velazquez J; Hernandez L; Leal Y; Kumar A; Estrada MP
    PLoS One; 2020; 15(10):e0239827. PubMed ID: 33006991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface.
    Braden LM; Koop BF; Jones SR
    Dev Comp Immunol; 2015 Jan; 48(1):178-91. PubMed ID: 25453579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish immune responses to parasitic copepod (namely sea lice) infection.
    Fast MD
    Dev Comp Immunol; 2014 Apr; 43(2):300-12. PubMed ID: 24001580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lepeophtheirus salmonis: characterization of prostaglandin E(2) in secretory products of the salmon louse by RP-HPLC and mass spectrometry.
    Fast MD; Ross NW; Craft CA; Locke SJ; MacKinnon SL; Johnson SC
    Exp Parasitol; 2004; 107(1-2):5-13. PubMed ID: 15208032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success.
    Bricknell IR; Dalesman SJ; O'Shea B; Pert CC; Luntz AJ
    Dis Aquat Organ; 2006 Aug; 71(3):201-12. PubMed ID: 17058601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization and field use of a bioassay to monitor sea lice Lepeophtheirus salmonis sensitivity to emamectin benzoate.
    Westcott JD; Stryhn H; Burka JF; Hammell KL
    Dis Aquat Organ; 2008 Apr; 79(2):119-31. PubMed ID: 18500028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual fish tank arrays in studies of Lepeophtheirus salmonis and lice loss variability.
    Hamre LA; Nilsen F
    Dis Aquat Organ; 2011 Nov; 97(1):47-56. PubMed ID: 22235594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.