These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12139028)

  • 1. Reduction photolithography using microlens arrays: applications in gray scale photolithography.
    Wu H; Odom TW; Whitesides GM
    Anal Chem; 2002 Jul; 74(14):3267-73. PubMed ID: 12139028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of submicrometer structures by photolithography using arrays of spherical microlenses.
    Wu MH; Park C; Whitesides GM
    J Colloid Interface Sci; 2003 Sep; 265(2):304-9. PubMed ID: 12962664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning flood illumination with microlens arrays.
    Wu MH; Paul KE; Whitesides GM
    Appl Opt; 2002 May; 41(13):2575-85. PubMed ID: 12009169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask.
    Wu H; Odom TW; Whitesides GM
    J Am Chem Soc; 2002 Jun; 124(25):7288-9. PubMed ID: 12071735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement.
    Connolly PWR; Ren X; McCarthy A; Mai H; Villa F; Waddie AJ; Taghizadeh MR; Tosi A; Zappa F; Henderson RK; Buller GS
    Appl Opt; 2020 May; 59(14):4488-4498. PubMed ID: 32400429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gray-scale photolithography using microfluidic photomasks.
    Chen C; Hirdes D; Folch A
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1499-504. PubMed ID: 12574512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays.
    Zaiba S; Kouriba T; Ziane O; Stéphan O; Bosson J; Vitrant G; Baldeck PL
    Opt Express; 2012 Jul; 20(14):15516-21. PubMed ID: 22772246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifocal microlens arrays using multilayer photolithography.
    Bae SI; Kim K; Yang S; Jang KW; Jeong KH
    Opt Express; 2020 Mar; 28(7):9082-9088. PubMed ID: 32225521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential shrink photolithography for plastic microlens arrays.
    Dyer D; Shreim S; Jayadev S; Lew V; Botvinick E; Khine M
    Appl Phys Lett; 2011 Jul; 99(3):34102-341023. PubMed ID: 21863126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation.
    Chen CF; Tzeng SD; Chen HY; Gwo S
    Opt Lett; 2005 Mar; 30(6):652-4. PubMed ID: 15792006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication.
    Wang MR; Su H
    Appl Opt; 1998 Nov; 37(32):7568-76. PubMed ID: 18301593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography.
    Gonidec M; Hamedi MM; Nemiroski A; Rubio LM; Torres C; Whitesides GM
    Nano Lett; 2016 Jul; 16(7):4125-32. PubMed ID: 27244272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature.
    Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two step process for the fabrication of diffraction limited concave microlens arrays.
    Ruffieux P; Scharf T; Philipoussis I; Herzig HP; Voelkel R; Weible KJ
    Opt Express; 2008 Nov; 16(24):19541-9. PubMed ID: 19030040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction.
    Deng T; Wu H; Brittain ST; Whitesides GM
    Anal Chem; 2000 Jul; 72(14):3176-80. PubMed ID: 10939384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction-Diffusion-Mediated Photolithography for Designing Pseudo-3D Microstructures.
    Kim JH; Je K; Shim TS; Kim SH
    Small; 2017 May; 13(17):. PubMed ID: 28234425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers.
    Suleski TJ; O'Shea DC
    Appl Opt; 1995 Nov; 34(32):7507-17. PubMed ID: 21060625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technique for monolithic fabrication of microlens arrays.
    Popovic ZD; Sprague RA; Connell GA
    Appl Opt; 1988 Apr; 27(7):1281-4. PubMed ID: 20531555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces.
    Hao B; Liu H; Chen F; Yang Q; Qu P; Du G; Si J; Wang X; Hou X
    Opt Express; 2012 Jun; 20(12):12939-48. PubMed ID: 22714321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.