These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12139056)
1. A chip system for size separation of macromolecules and particles by hydrodynamic chromatography. Chmela E; Tijssen R; Blom MT; Gardeniers HJ; van den Berg A Anal Chem; 2002 Jul; 74(14):3470-5. PubMed ID: 12139056 [TBL] [Abstract][Full Text] [Related]
2. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Blom MT; Chmela E; Oosterbroek RE; Tijssen R; van den Berg A Anal Chem; 2003 Dec; 75(24):6761-8. PubMed ID: 14670033 [TBL] [Abstract][Full Text] [Related]
3. Tunable hydrodynamic chromatography of microparticles localized in short microchannels. Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105 [TBL] [Abstract][Full Text] [Related]
4. A pressure driven injection system for an ultra-flat chromatographic microchannel. Chmela E; Blom MT; Gardeniers HJ; van den Berg A; Tijssen R Lab Chip; 2002 Nov; 2(4):235-41. PubMed ID: 15100817 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels. Ishibashi R; Mawatari K; Kitamori T Small; 2012 Apr; 8(8):1237-42. PubMed ID: 22354868 [TBL] [Abstract][Full Text] [Related]
6. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography. Otte T; Pasch H; Macko T; Brüll R; Stadler FJ; Kaschta J; Becker F; Buback M J Chromatogr A; 2011 Jul; 1218(27):4257-67. PubMed ID: 21238968 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of hydrodynamic separation of biological objects in microchannel devices. Lin YC; Jen CP Lab Chip; 2002 Aug; 2(3):164-9. PubMed ID: 15100828 [TBL] [Abstract][Full Text] [Related]
8. Application of two-dimensional chromatography to the characterization of macromolecules and biomacromolecules. Kilz P; Radke W Anal Bioanal Chem; 2015 Jan; 407(1):193-215. PubMed ID: 25404163 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. Fekete S; Veuthey JL; Guillarme D J Chromatogr A; 2015 Aug; 1408():1-14. PubMed ID: 26187764 [TBL] [Abstract][Full Text] [Related]
10. Size exclusion chromatography of synthetic polymers and biopolymers on common reversed phase and hydrophilic interaction chromatography columns. Caltabiano AM; Foley JP; Barth HG J Chromatogr A; 2016 Mar; 1437():74-87. PubMed ID: 26877177 [TBL] [Abstract][Full Text] [Related]
11. High efficiency hydrodynamic chromatography in micro- and sub-micrometer deep channels using an on-chip pressure-generation unit. Xia L; Dutta D Anal Chim Acta; 2017 Jan; 950():192-198. PubMed ID: 27916125 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature. Im K; Park HW; Lee S; Chang T J Chromatogr A; 2009 May; 1216(21):4606-10. PubMed ID: 19375711 [TBL] [Abstract][Full Text] [Related]
13. Reversed-phase liquid chromatography on a microchip with sample injector and monolithic silica column. Ishida A; Yoshikawa T; Natsume M; Kamidate T J Chromatogr A; 2006 Nov; 1132(1-2):90-8. PubMed ID: 16876806 [TBL] [Abstract][Full Text] [Related]
14. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation. Guillarme D; Nguyen DT; Rudaz S; Veuthey JL Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188 [TBL] [Abstract][Full Text] [Related]
16. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip. Zhang L; Yin X Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485 [TBL] [Abstract][Full Text] [Related]
17. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Wang C; Oleschuk R; Ouchen F; Li J; Thibault P; Harrison DJ Rapid Commun Mass Spectrom; 2000; 14(15):1377-83. PubMed ID: 10920358 [TBL] [Abstract][Full Text] [Related]
18. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules. Wouters S; De Vos J; Dores-Sousa JL; Wouters B; Desmet G; Eeltink S J Chromatogr A; 2017 Nov; 1523():224-233. PubMed ID: 28619590 [TBL] [Abstract][Full Text] [Related]
19. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate. Chen PJ; Shih CY; Tai YC Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734 [TBL] [Abstract][Full Text] [Related]
20. High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels. Ishibashi R; Mawatari K; Kitamori T J Chromatogr A; 2012 May; 1238():152-5. PubMed ID: 22503926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]