These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 12139403)

  • 1. Transcriptional regulation of the sodium-sulfate cotransporter NaS(i)-1 gene.
    Dawson PA; Markovich D
    Cell Biochem Biophys; 2002; 36(2-3):175-82. PubMed ID: 12139403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the mouse Nas1 promoter by vitamin D and thyroid hormone.
    Dawson PA; Markovich D
    Pflugers Arch; 2002 Jun; 444(3):353-9. PubMed ID: 12111243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3.
    Bolt MJ; Liu W; Qiao G; Kong J; Zheng W; Krausz T; Cs-Szabo G; Sitrin MD; Li YC
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E744-9. PubMed ID: 15165995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice.
    Dawson PA; Gardiner B; Grimmond S; Markovich D
    Physiol Genomics; 2006 Jul; 26(2):116-24. PubMed ID: 16621889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D.
    Beck L; Markovich D
    J Biol Chem; 2000 Apr; 275(16):11880-90. PubMed ID: 10766815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural characterization of the zebrafish Na+-sulfate cotransporter 1 (NaS1) cDNA and gene (slc13a1).
    Markovich D; Romano A; Storelli C; Verri T
    Physiol Genomics; 2008 Aug; 34(3):256-64. PubMed ID: 18544660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal sulfate metabolism in vitamin D-deficient rats.
    Fernandes I; Hampson G; Cahours X; Morin P; Coureau C; Couette S; Prie D; Biber J; Murer H; Friedlander G; Silve C
    J Clin Invest; 1997 Nov; 100(9):2196-203. PubMed ID: 9410896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter.
    Lee A; Markovich D
    Pflugers Arch; 2004 Aug; 448(5):490-9. PubMed ID: 15197597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of TNF-alpha expression in bone marrow macrophages: involvement of vitamin D response element.
    Hakim I; Bar-Shavit Z
    J Cell Biochem; 2003 Apr; 88(5):986-98. PubMed ID: 12616536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters.
    Lee A; Dawson PA; Markovich D
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1350-6. PubMed ID: 15833267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the NPT gene by a naturally occurring antisense transcript.
    Werner A; Preston-Fayers K; Dehmelt L; Nalbant P
    Cell Biochem Biophys; 2002; 36(2-3):241-52. PubMed ID: 12139410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells.
    Ito M; Sakai Y; Furumoto M; Segawa H; Haito S; Yamanaka S; Nakamura R; Kuwahata M; Miyamoto K
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1101-9. PubMed ID: 15671080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mouse chemerin receptor gene, mcmklr1, utilizes alternative promoters for transcription and is regulated by all-trans retinoic acid.
    MÃ¥rtensson UE; Bristulf J; Owman C; Olde B
    Gene; 2005 Apr; 350(1):65-77. PubMed ID: 15792532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological roles of mammalian sulfate transporters NaS1 and Sat1.
    Markovich D
    Arch Immunol Ther Exp (Warsz); 2011 Apr; 59(2):113-6. PubMed ID: 21298488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4).
    Markovich D; Regeer RR; Kunzelmann K; Dawson PA
    Biochem Biophys Res Commun; 2005 Jan; 326(4):729-34. PubMed ID: 15607730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological roles of renal anion transporters NaS1 and Sat1.
    Markovich D
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1267-70. PubMed ID: 21490138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipopolysaccharide negatively modulates vitamin D action by down-regulating expression of vitamin D-induced VDR in human monocytic THP-1 cells.
    Pramanik R; Asplin JR; Lindeman C; Favus MJ; Bai S; Coe FL
    Cell Immunol; 2004; 232(1-2):137-43. PubMed ID: 15876428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice.
    Dawson PA; Gardiner B; Lee S; Grimmond S; Markovich D
    J Steroid Biochem Mol Biol; 2008 Nov; 112(1-3):55-62. PubMed ID: 18790054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.