BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12139483)

  • 21. The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774.
    Romão CV; Liu MY; Le Gall J; Gomes CM; Braga V; Pacheco I; Xavier AV; Teixeira M
    Eur J Biochem; 1999 Apr; 261(2):438-43. PubMed ID: 10215854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A new non-spore forming thermophilic organism, reducing sulfates, Desulfovibrio thermophilus nov. sp].
    Rozanova EP; Khudiakova AI
    Mikrobiologiia; 1974; 43(6):1069-75. PubMed ID: 4449494
    [No Abstract]   [Full Text] [Related]  

  • 23. Desulfovibrio of the sheep rumen.
    Howard BH; Hungate RE
    Appl Environ Microbiol; 1976 Oct; 32(4):598-602. PubMed ID: 984832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.
    Salma KB; Lobna M; Sana K; Kalthoum C; Imene O; Abdelwaheb C
    J Basic Microbiol; 2016 Jul; 56(7):736-40. PubMed ID: 27059814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli.
    Pianzzola MJ; Soubes M; Touati D
    J Bacteriol; 1996 Dec; 178(23):6736-42. PubMed ID: 8955290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta).
    Bansal P; Verma S; Srivastava A
    Environ Pollut; 2016 Sep; 216():512-518. PubMed ID: 27321879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The distribution of peroxide regulating enzymes in the canine eye.
    Armstrong D; Santangelo G; Connole E
    Curr Eye Res; 1981; 1(4):225-42. PubMed ID: 7333126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of maltose by proliferating cells of Desulfovibrio desulfuricans 2198.
    Zolotukhina LM; Davydova MN; Krasilnikova EN
    Biochemistry (Mosc); 1999 Aug; 64(8):952-6. PubMed ID: 10498814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of molybdate by sulfate-reducing bacteria.
    Biswas KC; Woodards NA; Xu H; Barton LL
    Biometals; 2009 Feb; 22(1):131-9. PubMed ID: 19130259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection.
    Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of highly performant sulfate reducers from sulfate-rich environments.
    Hiligsmann S; Jacques P; Thonart P
    Biodegradation; 1998; 9(3-4):285-92. PubMed ID: 10022071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfate-reducing bacterium with unusual morphology and pigment content.
    Jones HE
    J Bacteriol; 1971 May; 106(2):339-46. PubMed ID: 4929856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Factors related to the oxygen tolerance of anaerobic bacteria.
    Rolfe RD; Hentges DJ; Campbell BJ; Barrett JT
    Appl Environ Microbiol; 1978 Aug; 36(2):306-13. PubMed ID: 697363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Malate dismutation by Desulfovibrio.
    Miller JD; Neumann PM; Elford L; Wakerley DS
    Arch Mikrobiol; 1970; 71(3):214-9. PubMed ID: 5469567
    [No Abstract]   [Full Text] [Related]  

  • 35. Engineering the antioxidative properties of lactic acid bacteria for improving its robustness.
    Zhang Y; Li Y
    Curr Opin Biotechnol; 2013 Apr; 24(2):142-7. PubMed ID: 22999826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774.
    Liu MC; Costa C; Coutinho IB; Moura JJ; Moura I; Xavier AV; LeGall J
    J Bacteriol; 1988 Dec; 170(12):5545-51. PubMed ID: 2848008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP generation by electron transport in Desulfovibrio desulfuricans.
    Vosjan JH
    Antonie Van Leeuwenhoek; 1970; 36(4):584-6. PubMed ID: 5312617
    [No Abstract]   [Full Text] [Related]  

  • 38. NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria.
    Kushkevych I; Dordević D; Alberfkani MI; Gajdács M; Ostorházi E; Vítězová M; Rittmann SKR
    Sci Rep; 2023 Aug; 13(1):13922. PubMed ID: 37626119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria.
    Newton DF; Cummings JH; Macfarlane S; Macfarlane GT
    J Appl Microbiol; 1998 Aug; 85(2):372-80. PubMed ID: 9750310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans.
    Drzyzga O; Gottschal JC
    Appl Environ Microbiol; 2002 Feb; 68(2):642-9. PubMed ID: 11823202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.