BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12139483)

  • 41. [Effect of various organic compounds on the growth and hydrocarbon production by sulfur-reducing bacteria].
    Bagaeva TV; Beliaeva MI
    Izv Akad Nauk Ser Biol; 2000; (3):382-6. PubMed ID: 10868066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: maintenance energy coefficient of the sulfate-reducing organism in the absence and presence of its partner.
    Traore AS; Gaudin C; Hatchikian CE; Le Gall J; Belaich JP
    J Bacteriol; 1983 Sep; 155(3):1260-4. PubMed ID: 6885720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. N., a new species of sulfate reducing bacterium.
    Czechowski MH; He SH; Nacro M; DerVartanian DV; Peck HD; LeGall J
    Biochem Biophys Res Commun; 1984 Dec; 125(3):1025-32. PubMed ID: 6097250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria.
    Fauque G; Herve D; Le Gall J
    Arch Microbiol; 1979 Jun; 121(3):261-4. PubMed ID: 229785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas.
    Fareleira P; Santos BS; António C; Moradas-Ferreira P; LeGall J; Xavier AV; Santos H
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1513-1522. PubMed ID: 12777491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS.
    Choi SC; Bartha R
    Appl Environ Microbiol; 1993 Jan; 59(1):290-5. PubMed ID: 8439155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.
    Sass H; Cypionka H
    Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels.
    Lobo SA; Melo AM; Carita JN; Teixeira M; Saraiva LM
    FEBS Lett; 2007 Feb; 581(3):433-6. PubMed ID: 17239374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine.
    Willis CL; Cummings JH; Neale G; Gibson GR
    Curr Microbiol; 1997 Nov; 35(5):294-8. PubMed ID: 9462959
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The N-terminal sequence of superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans.
    Bruschi M; Hatchikian EC; Bonicel J; Bovier-Lapierre G; Couchoud P
    FEBS Lett; 1977 Apr; 76(1):121-4. PubMed ID: 323056
    [No Abstract]   [Full Text] [Related]  

  • 52. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea.
    Bale SJ; Goodman K; Rochelle PA; Marchesi JR; Fry JC; Weightman AJ; Parkes RJ
    Int J Syst Bacteriol; 1997 Apr; 47(2):515-21. PubMed ID: 9103642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Transformation of cellulose nitro ester by the sulfate-reducing bacterium Desulfovibrio desulfuricans].
    Petrova OE; Tarasova NB; Davydova MN
    Mikrobiologiia; 2002; 71(3):429-30. PubMed ID: 12138769
    [No Abstract]   [Full Text] [Related]  

  • 54. Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by Desulfovibrio desulfuricans.
    PECK HD
    J Biol Chem; 1960 Sep; 235():2734-8. PubMed ID: 14431287
    [No Abstract]   [Full Text] [Related]  

  • 55. [Activity of antioxidative enzymes of the myocardium during ischemia].
    Gutkin DV; Petrovich IuA
    Biull Eksp Biol Med; 1982 Jan; 93(1):33-5. PubMed ID: 7066502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age-associated changes in antioxidants and antioxidative enzymes in rats.
    De AK; Darad R
    Mech Ageing Dev; 1991 Jun; 59(1-2):123-8. PubMed ID: 1890876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau.
    Moura I; Fauque G; LeGall J; Xavier AV; Moura JJ
    Eur J Biochem; 1987 Feb; 162(3):547-54. PubMed ID: 3030740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.
    Zaunmüller T; Kelly DJ; Glöckner FO; Unden G
    Microbiology (Reading); 2006 Aug; 152(Pt 8):2443-2453. PubMed ID: 16849807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts.
    Ze Y; Yin S; Ji Z; Luo L; Liu C; Hong F
    Biometals; 2009 Dec; 22(6):941-9. PubMed ID: 19421874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxygen Consumption by Desulfovibrio Strains with and without Polyglucose.
    van Niel EW; Gottschal JC
    Appl Environ Microbiol; 1998 Mar; 64(3):1034-9. PubMed ID: 16349510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.