BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12139483)

  • 61. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 62. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects.
    Boonchayaanant B; Kitanidis PK; Criddle CS
    Biotechnol Bioeng; 2008 Apr; 99(5):1107-19. PubMed ID: 17929318
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO(2) concentrations.
    Schwanz P; Polle A
    J Exp Bot; 2001 Jan; 52(354):133-43. PubMed ID: 11181722
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium.
    Lefèvre CT; Howse PA; Schmidt ML; Sabaty M; Menguy N; Luther GW; Bazylinski DA
    Environ Microbiol Rep; 2016 Dec; 8(6):1003-1015. PubMed ID: 27701830
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.
    Rao MV; Paliyath G; Ormrod DP
    Plant Physiol; 1996 Jan; 110(1):125-36. PubMed ID: 8587977
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteolytic and oxidoreductase activity of Treponema denticola ATCC 35405 grown in an aerobic and anaerobic gaseous environment.
    Syed SA; Mäkinen KK; Mäkinen PL; Chen CY; Muhammad Z
    Res Microbiol; 1993 May; 144(4):317-26. PubMed ID: 8248625
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Free radical detoxification in Giardia duodenalis.
    Brown DM; Upcroft JA; Upcroft P
    Mol Biochem Parasitol; 1995 Jun; 72(1-2):47-56. PubMed ID: 8538699
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzymes of Botrytis cinerea capable of breaking down hydrogen peroxide.
    Gil-ad NL; Bar-Nun N; Noy T; Mayer AM
    FEMS Microbiol Lett; 2000 Sep; 190(1):121-6. PubMed ID: 10981701
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Factors affecting the production of hydrogenase by Desulfovibrio desulfuricans.
    Martin SM; Glick BR; Martin WG
    Can J Microbiol; 1980 Oct; 26(10):1209-13. PubMed ID: 7006764
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7.
    Kushkevych I; Dordević D; Vítězová M
    Arch Microbiol; 2019 Apr; 201(3):389-397. PubMed ID: 30707247
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Morphology of sulfate reducing bacteria (genus Desulfovibrio) isolated in Rumania].
    Petrovici A; Sefer M; Constantinesco S
    Arch Roum Pathol Exp Microbiol; 1968 Dec; 27(4):875-82. PubMed ID: 4912629
    [No Abstract]   [Full Text] [Related]  

  • 73. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stable carbon isotope fractionation by sulfate-reducing bacteria.
    Londry KL; Des Marais DJ
    Appl Environ Microbiol; 2003 May; 69(5):2942-9. PubMed ID: 12732570
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum.
    Short KA; Blakemore RP
    Arch Microbiol; 1989; 152(4):342-6. PubMed ID: 2684080
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains.
    Haghjou MM; Shariati M; Smirnoff N
    Physiol Plant; 2009 Mar; 135(3):272-80. PubMed ID: 19236661
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens.
    Fecondo JV; Augusteyn RC
    Exp Eye Res; 1983 Jan; 36(1):15-23. PubMed ID: 6825728
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction?
    Chambers LA; Trudinger PA
    J Bacteriol; 1975 Jul; 123(1):36-40. PubMed ID: 1141200
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Changes in the nitrocellulose molecule induced by sulfate-reducing bacteria Desulfovibrio desulfuricans 1,388. The enzymes participating in this process.
    Tarasova NB; Petrova OE; Davydova MN; Khairutdinov BI; Klochkov VV
    Biochemistry (Mosc); 2004 Jul; 69(7):809-12. PubMed ID: 15310283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.