These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12139495)

  • 1. Gap velocity measurements of a blood pump model.
    Chua LP; Ong KS; Yu CM; Chan WK; Wong YW
    Artif Organs; 2002 Aug; 26(8):682-94. PubMed ID: 12139495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leakage flow measurements in a bio-centrifugal ventricular assist device model.
    Chua LP; Ong KS; Yu CM; Zhou T
    Artif Organs; 2003 Oct; 27(10):942-59. PubMed ID: 14616541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of gap pressure and wall shear stress of a blood pump model.
    Chua LP; Akamatsu T
    Med Eng Phys; 2000 Apr; 22(3):175-88. PubMed ID: 10964038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements by laser Doppler velocimetry in the casing/impeller clearance gap of a biocentrifugal ventricular assist device model.
    Chua LP; Ong KS; Song G; Ji W
    Artif Organs; 2009 Apr; 33(4):360-72. PubMed ID: 19335413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics of gap flow in a biocentrifugal blood pump.
    Chua LP; Song G; Yu SC; Lim TM
    Artif Organs; 2005 Aug; 29(8):620-8. PubMed ID: 16048478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative visualization of flow through a centrifugal blood pump: effect of washout holes.
    Nishida M; Yamane T; Orita T; Asztalos B; Clarke H
    Artif Organs; 1997 Jul; 21(7):720-9. PubMed ID: 9212946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of velocity and shear stress distributions in the impeller passages and the volute of a bio-centrifugal ventricular assist device.
    Chua LP; Ong KS; Song G
    Artif Organs; 2008 May; 32(5):376-87. PubMed ID: 18471167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow visualization study on centrifugal blood pump using a high speed video camera.
    Sakuma I; Tadokoro H; Fukui Y; Dohi T
    Artif Organs; 1995 Jul; 19(7):665-70. PubMed ID: 8572970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of the inner flow field of a biocentrifugal blood pump.
    Chua LP; Song G; Lim TM; Zhou T
    Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative visualization study of flow in a scaled-up model of a centrifugal blood pump.
    Ikeda T; Yamane T; Orita T; Tateishi T
    Artif Organs; 1996 Feb; 20(2):132-8. PubMed ID: 8712957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow visualization study to improve hemocompatibility of a centrifugal blood pump.
    Nishida M; Asztalos B; Yamane T; Masuzawa T; Tsukiya T; Endo S; Taenaka Y; Miyazoe Y; Ito K; Konishi Y
    Artif Organs; 1999 Aug; 23(8):697-703. PubMed ID: 10463491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leakage flow rate and wall shear stress distributions in a biocentrifugal ventricular assist device.
    Chua LP; Ong KS; Yu CM; Zhou T
    ASAIO J; 2004; 50(6):530-6. PubMed ID: 15672784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.
    Chan WK; Wong YW; Ong W; Koh SY; Chong V
    Artif Organs; 2005 Mar; 29(3):250-8. PubMed ID: 15725228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.