These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12139929)

  • 1. Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors.
    Mirny LA; Gelfand MS
    J Mol Biol; 2002 Aug; 321(1):7-20. PubMed ID: 12139929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using orthologous and paralogous proteins to identify specificity determining residues.
    Mirny LA; Gelfand MS
    Genome Biol; 2002; 3(3):PREPRINT0002. PubMed ID: 11897020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer.
    Zaim J; Kierzek AM
    Nucleic Acids Res; 2003 Mar; 31(5):1444-54. PubMed ID: 12595552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase.
    Anantharaman V; Aravind L
    J Mol Biol; 2006 Feb; 356(3):823-42. PubMed ID: 16376935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains.
    Raman N; Black PN; DiRusso CC
    J Biol Chem; 1997 Dec; 272(49):30645-50. PubMed ID: 9388199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple disordered loops function in corepressor-induced dimerization of the biotin repressor.
    Kwon K; Streaker ED; Ruparelia S; Beckett D
    J Mol Biol; 2000 Dec; 304(5):821-33. PubMed ID: 11124029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins.
    Fukami-Kobayashi K; Tateno Y; Nishikawa K
    Mol Biol Evol; 2003 Feb; 20(2):267-77. PubMed ID: 12598694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two are better than one.
    Halford SE; Gowers DM; Sessions RB
    Nat Struct Biol; 2000 Sep; 7(9):705-7. PubMed ID: 10966631
    [No Abstract]   [Full Text] [Related]  

  • 10. Plasticity in protein-DNA recognition: lac repressor interacts with its natural operator 01 through alternative conformations of its DNA-binding domain.
    Kalodimos CG; Bonvin AM; Salinas RK; Wechselberger R; Boelens R; Kaptein R
    EMBO J; 2002 Jun; 21(12):2866-76. PubMed ID: 12065400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operator search by mutant Lac repressors.
    Barker A; Fickert R; Oehler S; Müller-hill B
    J Mol Biol; 1998 May; 278(3):549-58. PubMed ID: 9600838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical constraints and functional characteristics of transcription factor-DNA interaction.
    Gerland U; Moroz JD; Hwa T
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12015-20. PubMed ID: 12218191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices.
    Schumacher MA; Choi KY; Zalkin H; Brennan RG
    Science; 1994 Nov; 266(5186):763-70. PubMed ID: 7973627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small protein-protein interaction domain common to KlcB and global regulators KorA and TrbA of promiscuous IncP plasmids.
    Bhattacharyya A; Figurski DH
    J Mol Biol; 2001 Jun; 310(1):51-67. PubMed ID: 11419936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimerisation mutants of Lac repressor. I. A monomeric mutant, L251A, that binds Lac operator DNA as a dimer.
    Dong F; Spott S; Zimmermann O; Kisters-Woike B; Müller-Hill B; Barker A
    J Mol Biol; 1999 Jul; 290(3):653-66. PubMed ID: 10395821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria.
    Pérez-Rueda E; Collado-Vides J
    J Mol Evol; 2001 Sep; 53(3):172-9. PubMed ID: 11523004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer.
    Swint-Kruse L; Elam CR; Lin JW; Wycuff DR; Shive Matthews K
    Protein Sci; 2001 Feb; 10(2):262-76. PubMed ID: 11266612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonella typhimurium to Escherichia coli CytR.
    Thomsen LE; Pedersen M; Nørregaard-Madsen M; Valentin-Hansen P; Kallipolitis BH
    J Mol Biol; 1999 Apr; 288(1):165-75. PubMed ID: 10329134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.