BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 12139937)

  • 1. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity.
    Liu Z; Tek V; Akoev V; Zolkiewski M
    J Mol Biol; 2002 Aug; 321(1):111-20. PubMed ID: 12139937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli.
    Barnett ME; Zolkiewski M
    Biochemistry; 2002 Sep; 41(37):11277-83. PubMed ID: 12220194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and activity of ClpB from Escherichia coli. Role of the amino-and -carboxyl-terminal domains.
    Barnett ME; Zolkiewska A; Zolkiewski M
    J Biol Chem; 2000 Dec; 275(48):37565-71. PubMed ID: 10982797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-L-lysine enhances the protein disaggregation activity of ClpB.
    Strub C; Schlieker C; Bukau B; Mogk A
    FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of conserved amino acids on substrate binding and conformational integrity of ClpB N-terminal domain.
    Tanaka N; Tani Y; Tada T; Lee YF; Kanaori K; Kunugi S
    Biochemistry; 2006 Jul; 45(28):8556-61. PubMed ID: 16834329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli.
    Zolkiewski M
    J Biol Chem; 1999 Oct; 274(40):28083-6. PubMed ID: 10497158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency.
    Zhang T; Ploetz EA; Nagy M; Doyle SM; Wickner S; Smith PE; Zolkiewski M
    Proteins; 2012 Dec; 80(12):2758-68. PubMed ID: 22890624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity.
    Beinker P; Schlee S; Groemping Y; Seidel R; Reinstein J
    J Biol Chem; 2002 Dec; 277(49):47160-6. PubMed ID: 12351638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV
    Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and interactions of the amino-terminal domain of ClpB from Escherichia coli.
    Tek V; Zolkiewski M
    Protein Sci; 2002 May; 11(5):1192-8. PubMed ID: 11967375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the middle domain of ClpB from Escherichia coli.
    Kedzierska S; Akoev V; Barnett ME; Zolkiewski M
    Biochemistry; 2003 Dec; 42(48):14242-8. PubMed ID: 14640692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB.
    Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M
    Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication.
    Buchberger A; Gässler CS; Büttner M; McMacken R; Bukau B
    J Biol Chem; 1999 Dec; 274(53):38017-26. PubMed ID: 10608870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.
    Zeymer C; Fischer S; Reinstein J
    J Biol Chem; 2014 Nov; 289(47):32965-76. PubMed ID: 25253689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum.
    Ngansop F; Li H; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):191-5. PubMed ID: 23994135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.