These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12140010)

  • 1. Increased post-exercise facilitation of motor evoked potentials in multiple sclerosis.
    Nielsen JF; Nørgaard P
    Clin Neurophysiol; 2002 Aug; 113(8):1295-300. PubMed ID: 12140010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis.
    Perretti A; Balbi P; Orefice G; Trojano L; Marcantonio L; Brescia-Morra V; Ascione S; Manganelli F; Conte G; Santoro L
    Clin Neurophysiol; 2004 Sep; 115(9):2128-33. PubMed ID: 15294215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in corticomotor excitability after fatiguing muscle contractions.
    Sacco P; Thickbroom GW; Byrnes ML; Mastaglia FL
    Muscle Nerve; 2000 Dec; 23(12):1840-6. PubMed ID: 11102907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation.
    Samii A; Wassermann EM; Ikoma K; Mercuri B; Hallett M
    Neurology; 1996 May; 46(5):1376-82. PubMed ID: 8628485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.
    Lévénez M; Garland SJ; Klass M; Duchateau J
    J Neurophysiol; 2008 Feb; 99(2):554-63. PubMed ID: 18046002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-exercise facilitation of compound muscle action potentials evoked by transcranial magnetic stimulation in healthy subjects.
    Nørgaard P; Nielsen JF; Andersen H
    Exp Brain Res; 2000 Jun; 132(4):517-22. PubMed ID: 10912832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired sleep-associated modulation of post-exercise corticomotor depression in multiple sclerosis.
    Bridoux A; Créange A; Sangare A; Ayache SS; Hosseini H; Drouot X; Lefaucheur JP
    J Neurol Sci; 2015 Jul; 354(1-2):91-6. PubMed ID: 26003229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-exercise facilitation and depression of M wave and motor evoked potentials in healthy subjects.
    Lentz M; Nielsen JF
    Clin Neurophysiol; 2002 Jul; 113(7):1092-8. PubMed ID: 12088705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple sclerosis-related fatigue: the role of impaired corticospinal responses and heightened exercise fatigability.
    Coates KD; Aboodarda SJ; Krüger RL; Martin T; Metz LM; Jarvis SE; Millet GY
    J Neurophysiol; 2020 Oct; 124(4):1131-1143. PubMed ID: 32877296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii.
    Aboodarda SJ; Šambaher N; Behm DG
    Scand J Med Sci Sports; 2016 Nov; 26(11):1301-1312. PubMed ID: 26633736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Three Different Strategies Based on Motor Task Performance on Neuromuscular Fatigue in Healthy Men and Men with Multiple Sclerosis.
    Kyguolienė L; Skurvydas A; Eimantas N; Baranauskienė N; Balnytė R; Brazaitis M
    Medicina (Kaunas); 2018 May; 54(3):. PubMed ID: 30344264
    [No Abstract]   [Full Text] [Related]  

  • 14. The Effects of Sex and Motoneuron Pool on Central Fatigue.
    Yacyshyn AF; Nettleton J; McNeil CJ
    Med Sci Sports Exerc; 2018 May; 50(5):1061-1069. PubMed ID: 29283935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor-evoked potentials in response to fatiguing grip exercise in multiple sclerosis patients.
    Petajan JH; White AT
    Clin Neurophysiol; 2000 Dec; 111(12):2188-95. PubMed ID: 11090771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task.
    van Hedel HJ; Murer C; Dietz V; Curt A
    J Neurol; 2007 Aug; 254(8):1089-98. PubMed ID: 17431701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What are the best isometric exercises of muscle potentiation?
    Skurvydas A; Jurgelaitiene G; Kamandulis S; Mickeviciene D; Brazaitis M; Valanciene D; Karanauskiene D; Mickevicius M; Mamkus G
    Eur J Appl Physiol; 2019 Apr; 119(4):1029-1039. PubMed ID: 30734104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.