BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12140179)

  • 1. Percutaneous absorption of explosives and related compounds: an empirical model of bioavailability of organic nitro compounds from soil.
    Reifenrath WG; Kammen HO; Palmer WG; Major MM; Leach GJ
    Toxicol Appl Pharmacol; 2002 Jul; 182(2):160-8. PubMed ID: 12140179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of munition contaminants.
    Reifenrath WG; Kammen HO; Reddy G; Major MA; Leach GJ
    J Toxicol Environ Health A; 2008; 71(8):486-94. PubMed ID: 18338283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector.
    Walsh ME
    Talanta; 2001 May; 54(3):427-38. PubMed ID: 18968268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First production-level bioremediation of explosives-contaminated soil in the United States.
    Emery DD; Faessler PC
    Ann N Y Acad Sci; 1997 Nov; 829():326-40. PubMed ID: 9472327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial sweat enhances dermal transfer of chlorpyrifos from treated nylon carpet fibers.
    Williams RL; Reifenrath WG; Krieger RI
    J Environ Sci Health B; 2005; 40(4):535-43. PubMed ID: 16047878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):682-93. PubMed ID: 18444069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives.
    Neuwoehner J; Schofer A; Erlenkaemper B; Steinbach K; Hund-Rinke TK; Eisentraeger A
    Environ Toxicol Chem; 2007 Jun; 26(6):1090-9. PubMed ID: 17571672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent.
    Borch T; Gerlach R
    J Chromatogr A; 2004 Jan; 1022(1-2):83-94. PubMed ID: 14753774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro.
    Lachance B; Robidoux PY; Hawari J; Ampleman G; Thiboutot S; Sunahara GI
    Mutat Res; 1999 Jul; 444(1):25-39. PubMed ID: 10477337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines.
    Sağlam Ş; Üzer A; Erçağ E; Apak R
    Anal Chem; 2018 Jun; 90(12):7364-7370. PubMed ID: 29786423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of explosives and their degradation products in soil environments.
    Halasz A; Groom C; Zhou E; Paquet L; Beaulieu C; Deschamps S; Corriveau A; Thiboutot S; Ampleman G; Dubois C; Hawari J
    J Chromatogr A; 2002 Jul; 963(1-2):411-8. PubMed ID: 12187997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of liquid chromatography-mass spectrometry in metabolic studies of explosives.
    Yinon J; Hwang DG
    J Chromatogr; 1987 May; 394(1):253-7. PubMed ID: 3597622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of explosives in soil and ground water by liquid chromatography-amperometric detection.
    Hilmi A; Luong JH; Nguyen AL
    J Chromatogr A; 1999 Jun; 844(1-2):97-110. PubMed ID: 10399326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms.
    Best EP; Tatem HE; Geter KN; Wells ML; Lane BK
    Environ Toxicol Chem; 2008 Dec; 27(12):2539-47. PubMed ID: 18620472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of (14)C-Cyclotrimethylenetrinitramine (RDX) from Soils through Excised Human Skin.
    Reddy G; Allen NA; Major MA
    Toxicol Mech Methods; 2008 Jan; 18(7):575-9. PubMed ID: 20020856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.
    Oh SY; Yoon HS
    J Environ Qual; 2016 May; 45(3):993-1002. PubMed ID: 27136167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Percutaneous absorption of 2,4-dichlorophenoxyacetic acid from soil with respect to soil load and skin contact time: in vivo absorption in rhesus monkey and in vitro absorption in human skin.
    Wester RC; Melendres J; Logan F; Hui X; Maiback HI; Wade M; Huang KC
    J Toxicol Environ Health; 1996 Mar; 47(4):335-44. PubMed ID: 8600287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil.
    Lachance B; Renoux AY; Sarrazin M; Hawari J; Sunahara GI
    Chemosphere; 2004 Jun; 55(10):1339-48. PubMed ID: 15081777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.