BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12140241)

  • 1. Power analysis of tests for loss of selective constraint in cave crayfish and nonphotosynthetic plant lineages.
    Leebens-Mack J; DePamphilis C
    Mol Biol Evol; 2002 Aug; 19(8):1292-302. PubMed ID: 12140241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants.
    Wolfe AD; dePamphilis CW
    Mol Biol Evol; 1998 Oct; 15(10):1243-58. PubMed ID: 9787431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche.
    Wolfe AD; dePamphilis CW
    Plant Mol Biol; 1997 Apr; 33(6):965-77. PubMed ID: 9154979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function.
    Young ND; dePamphilis CW
    BMC Evol Biol; 2005 Feb; 5():16. PubMed ID: 15713237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbcL in Cryptomonas (Cryptophyceae).
    Hoef-Emden K; Tran HD; Melkonian M
    BMC Evol Biol; 2005 Oct; 5():56. PubMed ID: 16232313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae).
    Barrett CF; Freudenstein JV
    Mol Phylogenet Evol; 2008 May; 47(2):665-79. PubMed ID: 18374606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis.
    Christin PA; Salamin N; Muasya AM; Roalson EH; Russier F; Besnard G
    Mol Biol Evol; 2008 Nov; 25(11):2361-8. PubMed ID: 18695049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the evolution of ribulose-1, 5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae).
    Manen JF; Natali A
    J Mol Evol; 1995 Dec; 41(6):920-7. PubMed ID: 8587137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple and different genomic rearrangements of the rbcL gene are present in the parasitic orchid Neottia nidus-avis.
    Cafasso D; Chinali G
    Genome; 2012 Sep; 55(9):629-37. PubMed ID: 22991932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel reduction in expression, but no loss of functional constraint, in two opsin paralogs within cave populations of Gammarus minus (Crustacea: Amphipoda).
    Carlini DB; Satish S; Fong DW
    BMC Evol Biol; 2013 Apr; 13():89. PubMed ID: 23617561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary patterns of codon usage in the chloroplast gene rbcL.
    Wall DP; Herbeck JT
    J Mol Evol; 2003 Jun; 56(6):673-88; discussion 689-90. PubMed ID: 12911031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants.
    Bousquet J; Strauss SH; Doerksen AH; Price RA
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7844-8. PubMed ID: 1502205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation.
    dePamphilis CW; Young ND; Wolfe AD
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7367-72. PubMed ID: 9207097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA barcoding of arid wild plants using rbcL gene sequences.
    Bafeel SO; Arif IA; Bakir MA; Al Homaidan AA; Al Farhan AH; Khan HA
    Genet Mol Res; 2012 Jul; 11(3):1934-41. PubMed ID: 22869548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins.
    Porter ML; Cronin TW; McClellan DA; Crandall KA
    Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of nuclear genes in Cupressacea, a group of conifer trees.
    Kusumi J; Tsumura Y; Yoshimaru H; Tachida H
    Mol Biol Evol; 2002 May; 19(5):736-47. PubMed ID: 11961107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end.
    Stern DB; Breinholt J; Pedraza-Lara C; López-Mejía M; Owen CL; Bracken-Grissom H; Fetzner JW; Crandall KA
    Evolution; 2017 Oct; 71(10):2522-2532. PubMed ID: 28804900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Evolution of Gene Expression Underlying Vision Loss in Cave Animals.
    Stern DB; Crandall KA
    Mol Biol Evol; 2018 Aug; 35(8):2005-2014. PubMed ID: 29788330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.