These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 12140552)
1. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO(2) anatase. Wagemaker M; Kentgens AP; Mulder FM Nature; 2002 Jul; 418(6896):397-9. PubMed ID: 12140552 [TBL] [Abstract][Full Text] [Related]
2. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842 [TBL] [Abstract][Full Text] [Related]
3. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. Wagemaker M; Borghols WJ; van Eck ER; Kentgens AP; Kearley GJ; Mulder FM Chemistry; 2007; 13(7):2023-8. PubMed ID: 17154318 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869 [TBL] [Abstract][Full Text] [Related]
5. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
6. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. Wagemaker M; van de Krol R; Kentgens AP; van Well AA; Mulder FM J Am Chem Soc; 2001 Nov; 123(46):11454-61. PubMed ID: 11707123 [TBL] [Abstract][Full Text] [Related]
7. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375 [TBL] [Abstract][Full Text] [Related]
9. Defect chemistry, surface structures, and lithium insertion in anatase TiO2. Olson CL; Nelson J; Islam MS J Phys Chem B; 2006 May; 110(20):9995-10001. PubMed ID: 16706458 [TBL] [Abstract][Full Text] [Related]
10. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. Wagemaker M; Kearley GJ; Van Well AA; Mutka H; Mulder FM J Am Chem Soc; 2003 Jan; 125(3):840-8. PubMed ID: 12526685 [TBL] [Abstract][Full Text] [Related]
11. Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. Wagemaker M; Borghols WJ; Mulder FM J Am Chem Soc; 2007 Apr; 129(14):4323-7. PubMed ID: 17362005 [TBL] [Abstract][Full Text] [Related]
12. Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy. Wilkening M; Amade R; Iwaniak W; Heitjans P Phys Chem Chem Phys; 2007 Mar; 9(10):1239-46. PubMed ID: 17325770 [TBL] [Abstract][Full Text] [Related]
13. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Shekibi Y; Rüther T; Huang J; Hollenkamp AF Phys Chem Chem Phys; 2012 Apr; 14(13):4597-604. PubMed ID: 22354216 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Li J; Wan W; Zhou H; Li J; Xu D Chem Commun (Camb); 2011 Mar; 47(12):3439-41. PubMed ID: 21298139 [TBL] [Abstract][Full Text] [Related]
15. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. Ye J; Liu W; Cai J; Chen S; Zhao X; Zhou H; Qi L J Am Chem Soc; 2011 Feb; 133(4):933-40. PubMed ID: 21142068 [TBL] [Abstract][Full Text] [Related]
16. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089 [TBL] [Abstract][Full Text] [Related]
19. Electrodes with high power and high capacity for rechargeable lithium batteries. Kang K; Meng YS; Bréger J; Grey CP; Ceder G Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487 [TBL] [Abstract][Full Text] [Related]
20. Microscopic Li self-diffusion parameters in the lithiated anode material Li4 + xTi5O12 (0 < or = x < or = 3) measured by 7Li solid state NMR. Wilkening M; Iwaniak W; Heine J; Epp V; Kleinert A; Behrens M; Nuspl G; Bensch W; Heitjans P Phys Chem Chem Phys; 2007 Dec; 9(47):6199-202. PubMed ID: 18046468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]