These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12141606)

  • 1. Radioactivity and heavy metal composition of Nigerian phosphate rocks: possible environmental implications.
    Ogunleye PO; Mayaki MC; Amapu IY
    J Environ Radioact; 2002; 62(1):39-48. PubMed ID: 12141606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries.
    Nziguheba G; Smolders E
    Sci Total Environ; 2008 Feb; 390(1):53-7. PubMed ID: 18028985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products.
    da Conceição FT; Bonotto DM
    Environ Pollut; 2006 Jan; 139(2):232-43. PubMed ID: 16099562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INAA and DNAA for uranium determination in geological samples from Egypt.
    El-Taher A
    Appl Radiat Isot; 2010 Jun; 68(6):1189-92. PubMed ID: 20185320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns.
    Cheraghi M; Lorestani B; Merrikhpour H
    Biol Trace Elem Res; 2012 Jan; 145(1):87-92. PubMed ID: 21826610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioactive rock phosphate: the feed stock of phosphate fertilizers used in Pakistan.
    Tufail M; Akhtar N; Waqas M
    Health Phys; 2006 Apr; 90(4):361-70. PubMed ID: 16538141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China.
    Qiutong X; Mingkui Z
    Ecotoxicol Environ Saf; 2017 Aug; 142():410-416. PubMed ID: 28454053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental analysis of Egyptian phosphate fertilizer components.
    El-Bahi SM; El-Dine NW; El-Shershaby A; Sroor A
    Health Phys; 2004 Mar; 86(3):303-7. PubMed ID: 14982231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry.
    Malczewski D; Teper L; Dorda J
    J Environ Radioact; 2004; 73(3):233-45. PubMed ID: 15050357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of trace metal concentration in compost, DAP, and TSP fertilizers by neutron activation analysis (NAA) and insights from density functional theory calculations.
    Rahman MS; Hossain SM; Rahman MT; Halim MA; Ishtiak MN; Kabir M
    Environ Monit Assess; 2017 Nov; 189(12):618. PubMed ID: 29119383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria.
    Okeji MC; Agwu KK; Idigo FU
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals input with phosphate fertilizers used in Argentina.
    Giuffré de López Camelo L; Ratto de Miguez S; Marbán L
    Sci Total Environ; 1997 Oct; 204(3):245-50. PubMed ID: 9335159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical features of topsoils in the Gaza Strip: natural occurrence and anthropogenic inputs.
    Shomar BH; Müller G; Yahya A
    Environ Res; 2005 Jul; 98(3):372-82. PubMed ID: 15910793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India.
    Mohanty AK; Sengupta D; Das SK; Saha SK; Van KV
    J Environ Radioact; 2004; 75(1):15-33. PubMed ID: 15149759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (Paper 1).
    Louw I
    J Environ Radioact; 2020 Jun; 217():106214. PubMed ID: 32217246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental analysis of two Egyptian phosphate rock mines by instrumental neutron activation analysis and atomic absorption spectrometry.
    El-Taher A
    Appl Radiat Isot; 2010 Mar; 68(3):511-5. PubMed ID: 20015656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the application of silicon and Moringa seed extract reduce heavy metals toxicity in potato tubers treated with phosphate fertilizers?
    Elrys AS; Merwad AMA; Abdo AIE; Abdel-Fatah MK; Desoky EM
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16776-16787. PubMed ID: 29611129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.
    Seshadri B; Bolan NS; Choppala G; Kunhikrishnan A; Sanderson P; Wang H; Currie LD; Tsang DCW; Ok YS; Kim G
    Chemosphere; 2017 Oct; 184():197-206. PubMed ID: 28595145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of Heavy Metals from Dolomite Phosphate Rock after Activation with Organic Agent.
    Yu Y; Xiong J; Liu R; He Z
    J Environ Qual; 2019 May; 48(3):694-700. PubMed ID: 31180439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.