BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12141987)

  • 1. Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling.
    Kleerebezem M; Boels IC; Groot MN; Mierau I; Sybesma W; Hugenholtz J
    J Biotechnol; 2002 Sep; 98(2-3):199-213. PubMed ID: 12141987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic pathway engineering in lactic acid bacteria.
    Kleerebezem M; Hugenholtz J
    Curr Opin Biotechnol; 2003 Apr; 14(2):232-7. PubMed ID: 12732327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals.
    Hugenholtz J; Sybesma W; Groot MN; Wisselink W; Ladero V; Burgess K; van Sinderen D; Piard JC; Eggink G; Smid EJ; Savoy G; Sesma F; Jansen T; Hols P; Kleerebezem M
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):217-35. PubMed ID: 12369189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties?
    Kleerebezem M; van Kranenburg R; Tuinier R; Boels IC; Zoon P; Looijesteijn E; Hugenholtz J; de Vos WM
    Antonie Van Leeuwenhoek; 1999; 76(1-4):357-65. PubMed ID: 10532391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient production of α-acetolactate by whole cell catalytic transformation of fermentation-derived pyruvate.
    Dorau R; Chen L; Liu J; Jensen PR; Solem C
    Microb Cell Fact; 2019 Dec; 18(1):217. PubMed ID: 31884954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Lactococcus lactis using a genome-scale flux model.
    Oliveira AP; Nielsen J; Förster J
    BMC Microbiol; 2005 Jun; 5():39. PubMed ID: 15982422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations.
    Hugenholtz J; Kleerebezem M
    Curr Opin Biotechnol; 1999 Oct; 10(5):492-7. PubMed ID: 10508636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of pyruvate metabolism in Lactococcus lactis.
    Cocaign-Bousquet M; Garrigues C; Loubiere P; Lindley ND
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):253-67. PubMed ID: 8879410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiamine-Starved
    Zhao S; Solem C
    J Agric Food Chem; 2024 Mar; 72(9):4858-4868. PubMed ID: 38377583
    [No Abstract]   [Full Text] [Related]  

  • 11. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth.
    García-Quintáns N; Repizo G; Martín M; Magni C; López P
    Appl Environ Microbiol; 2008 Apr; 74(7):1988-96. PubMed ID: 18245243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of sugar catabolism in lactic acid bacteria.
    de Vos WM
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):223-42. PubMed ID: 8879408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats.
    LeBlanc JG; Sybesma W; Starrenburg M; Sesma F; de Vos WM; de Giori GS; Hugenholtz J
    Nutrition; 2010; 26(7-8):835-41. PubMed ID: 19931414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering metabolic highways in Lactococci and other lactic acid bacteria.
    de Vos WM; Hugenholtz J
    Trends Biotechnol; 2004 Feb; 22(2):72-9. PubMed ID: 14757041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Evolution of gene regulation research in Lactococcus lactis.
    Kok J; van Gijtenbeek LA; de Jong A; van der Meulen SB; Solopova A; Kuipers OP
    FEMS Microbiol Rev; 2017 Aug; 41(Supp_1):S220-S243. PubMed ID: 28830093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.
    Oh E; Lu M; Park C; Park C; Oh HB; Lee SY; Lee J
    J Microbiol Biotechnol; 2011 Feb; 21(2):162-9. PubMed ID: 21364298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on Lactococcus lactis: from food to factory.
    Song AA; In LLA; Lim SHE; Rahim RA
    Microb Cell Fact; 2017 Apr; 16(1):55. PubMed ID: 28376880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism.
    Le Bars D; Yvon M
    J Appl Microbiol; 2008 Jan; 104(1):171-7. PubMed ID: 17850313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.