These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12142284)
21. Signaling molecules derived from the cholesterol biosynthetic pathway. Jackson SM; Ericsson J; Edwards PA Subcell Biochem; 1997; 28():1-21. PubMed ID: 9090289 [No Abstract] [Full Text] [Related]
22. An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast. Gardner RG; Shan H; Matsuda SP; Hampton RY J Biol Chem; 2001 Mar; 276(12):8681-94. PubMed ID: 11134013 [TBL] [Abstract][Full Text] [Related]
23. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Ravid T; Doolman R; Avner R; Harats D; Roitelman J J Biol Chem; 2000 Nov; 275(46):35840-7. PubMed ID: 10964918 [TBL] [Abstract][Full Text] [Related]
24. Lipid metabolism: regulation of lipid metabolism gene expression by peroxisome proliferator-activated receptor alpha and sterol regulatory element binding proteins. Narce M; Poisson JP Curr Opin Lipidol; 2002 Aug; 13(4):445-7. PubMed ID: 12151860 [No Abstract] [Full Text] [Related]
25. [The SREBP pathway: controlling lipid metabolism by two-step proteolysis of a membrane-bound transcription factor]. Sakai J Seikagaku; 2000 Jun; 72(6):437-50. PubMed ID: 10918818 [No Abstract] [Full Text] [Related]
26. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase. Wangeline MA; Hampton RY J Biol Chem; 2021; 296():100063. PubMed ID: 33184059 [TBL] [Abstract][Full Text] [Related]
27. Membrane-bound transcription factors: regulated release by RIP or RUP. Hoppe T; Rape M; Jentsch S Curr Opin Cell Biol; 2001 Jun; 13(3):344-8. PubMed ID: 11343906 [TBL] [Abstract][Full Text] [Related]
28. Regulation of HMG-CoA reductase in mammals and yeast. Burg JS; Espenshade PJ Prog Lipid Res; 2011 Oct; 50(4):403-10. PubMed ID: 21801748 [TBL] [Abstract][Full Text] [Related]
30. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Foresti O; Ruggiano A; Hannibal-Bach HK; Ejsing CS; Carvalho P Elife; 2013 Jul; 2():e00953. PubMed ID: 23898401 [TBL] [Abstract][Full Text] [Related]
31. Proteostatic Tactics in the Strategy of Sterol Regulation. Wangeline MA; Vashistha N; Hampton RY Annu Rev Cell Dev Biol; 2017 Oct; 33():467-489. PubMed ID: 28992438 [TBL] [Abstract][Full Text] [Related]
32. Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Hampton RY; Garza RM Chem Rev; 2009 Apr; 109(4):1561-74. PubMed ID: 19243134 [No Abstract] [Full Text] [Related]
33. "Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD. Wangeline MA; Hampton RY J Biol Chem; 2018 Sep; 293(38):14937-14950. PubMed ID: 30018140 [TBL] [Abstract][Full Text] [Related]
38. Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. Shearer AG; Hampton RY EMBO J; 2005 Jan; 24(1):149-59. PubMed ID: 15635451 [TBL] [Abstract][Full Text] [Related]
39. The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Ciechanover A Biochem Soc Trans; 2003 Apr; 31(2):474-81. PubMed ID: 12653666 [TBL] [Abstract][Full Text] [Related]
40. Sterol-free eukaryotic cells from continuous cell lines of insects. Mitsuhashi J; Nakasone S; Horie Y Cell Biol Int Rep; 1983 Dec; 7(12):1057-62. PubMed ID: 6667502 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]