BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 12142407)

  • 1. Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response.
    Ferrández A; Hawkins AC; Summerfield DT; Harwood CS
    J Bacteriol; 2002 Aug; 184(16):4374-83. PubMed ID: 12142407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence.
    Garvis S; Munder A; Ball G; de Bentzmann S; Wiehlmann L; Ewbank JJ; Tümmler B; Filloux A
    PLoS Pathog; 2009 Aug; 5(8):e1000540. PubMed ID: 19662168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Armitage JP
    Mol Microbiol; 2001 Jun; 40(6):1261-72. PubMed ID: 11442826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence.
    Tumewu SA; Ogawa Y; Okamoto T; Sugihara Y; Yamada H; Taguchi F; Matsui H; Yamamoto M; Noutoshi Y; Toyoda K; Ichinose Y
    Mol Genet Genomics; 2021 Mar; 296(2):299-312. PubMed ID: 33386986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase.
    Güvener ZT; Tifrea DF; Harwood CS
    Mol Microbiol; 2006 Jul; 61(1):106-18. PubMed ID: 16824098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa.
    Kato J; Nakamura T; Kuroda A; Ohtake H
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):155-61. PubMed ID: 10052136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum.
    Berleman JE; Bauer CE
    Mol Microbiol; 2005 Mar; 55(5):1390-402. PubMed ID: 15720548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CheR- and CheB-dependent chemosensory adaptation system of Rhodobacter sphaeroides.
    Martin AC; Wadhams GH; Shah DS; Porter SL; Mantotta JC; Craig TJ; Verdult PH; Jones H; Armitage JP
    J Bacteriol; 2001 Dec; 183(24):7135-44. PubMed ID: 11717272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa.
    Masduki A; Nakamura J; Ohga T; Umezaki R; Kato J; Ohtake H
    J Bacteriol; 1995 Feb; 177(4):948-52. PubMed ID: 7860605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins.
    Yost CK; Rochepeau P; Hynes MF
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1945-1956. PubMed ID: 9695927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant.
    Alvarez-Ortega C; Harwood CS
    Appl Environ Microbiol; 2007 Dec; 73(23):7793-5. PubMed ID: 17933940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation.
    Hyakutake A; Homma M; Austin MJ; Boin MA; Häse CC; Kawagishi I
    J Bacteriol; 2005 Dec; 187(24):8403-10. PubMed ID: 16321945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa.
    Hong CS; Shitashiro M; Kuroda A; Ikeda T; Takiguchi N; Ohtake H; Kato J
    FEMS Microbiol Lett; 2004 Feb; 231(2):247-52. PubMed ID: 14987771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of heterologous receptors in McpB-mediated signalling in Bacillus subtilis chemotaxis.
    Zimmer MA; Szurmant H; Saulmon MM; Collins MA; Bant JS; Ordal GW
    Mol Microbiol; 2002 Jul; 45(2):555-68. PubMed ID: 12123464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem.
    Kato J; Kim HE; Takiguchi N; Kuroda A; Ohtake H
    J Biosci Bioeng; 2008 Jul; 106(1):1-7. PubMed ID: 18691523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two chemosensory pathways in Rhodobacter sphaeroides.
    Hamblin PA; Maguire BA; Grishanin RN; Armitage JP
    Mol Microbiol; 1997 Dec; 26(5):1083-96. PubMed ID: 9426144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum.
    Berleman JE; Bauer CE
    Mol Microbiol; 2005 Jun; 56(6):1457-66. PubMed ID: 15916598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene.
    Kim HE; Shitashiro M; Kuroda A; Takiguchi N; Ohtake H; Kato J
    J Bacteriol; 2006 Sep; 188(18):6700-2. PubMed ID: 16952963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components.
    Jiang ZY; Gest H; Bauer CE
    J Bacteriol; 1997 Sep; 179(18):5720-7. PubMed ID: 9294427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the mcpA and mcpB genes capable of encoding methyl-accepting type chemoreceptors in Rhodobacter capsulatus.
    Michotey V; Toussaint B; Richaud P; Vignais PM
    Gene; 1996 Apr; 170(1):73-6. PubMed ID: 8621092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.