These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 12142426)

  • 1. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways.
    Gerdes SY; Scholle MD; D'Souza M; Bernal A; Baev MV; Farrell M; Kurnasov OV; Daugherty MD; Mseeh F; Polanuyer BM; Campbell JW; Anantha S; Shatalin KY; Chowdhury SA; Fonstein MY; Osterman AL
    J Bacteriol; 2002 Aug; 184(16):4555-72. PubMed ID: 12142426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.
    Bi J; Wang H; Xie J
    J Cell Physiol; 2011 Feb; 226(2):331-40. PubMed ID: 20857400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.
    Wang X; Zhou YJ; Wang L; Liu W; Liu Y; Peng C; Zhao ZK
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular Engineering of the Flavin Pathway in Escherichia coli for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production.
    Liu S; Diao N; Wang Z; Lu W; Tang YJ; Chen T
    J Agric Food Chem; 2019 Jun; 67(23):6532-6540. PubMed ID: 31099250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol Bioeng; 2017 Sep; 114(9):1928-1936. PubMed ID: 28498544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD.
    Sorci L; Pan Y; Eyobo Y; Rodionova I; Huang N; Kurnasov O; Zhong S; MacKerell AD; Zhang H; Osterman AL
    Chem Biol; 2009 Aug; 16(8):849-61. PubMed ID: 19716475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements.
    Sebastián M; Lira-Navarrete E; Serrano A; Marcuello C; Velázquez-Campoy A; Lostao A; Hurtado-Guerrero R; Medina M; Martínez-Júlvez M
    Sci Rep; 2017 Aug; 7(1):7609. PubMed ID: 28790457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome detection of conditionally essential and dispensable genes in Escherichia coli via genetic footprinting.
    Scholle MD; Gerdes SY
    Methods Mol Biol; 2008; 416():83-102. PubMed ID: 18392962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection.
    Sorci L; Blaby I; De Ingeniis J; Gerdes S; Raffaelli N; de Crécy Lagard V; Osterman A
    J Biol Chem; 2010 Dec; 285(50):39490-9. PubMed ID: 20926389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A subsystems-based approach to the identification of drug targets in bacterial pathogens.
    Osterman AL; Begley TP
    Prog Drug Res; 2007; 64():131, 133-70. PubMed ID: 17195474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics.
    Daugherty M; Polanuyer B; Farrell M; Scholle M; Lykidis A; de Crécy-Lagard V; Osterman A
    J Biol Chem; 2002 Jun; 277(24):21431-9. PubMed ID: 11923312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis.
    Kumar P; Chhibber M; Surolia A
    Biochem Biophys Res Commun; 2007 Oct; 361(4):903-9. PubMed ID: 17679145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD(P) biosynthesis enzymes as potential targets for selective drug design.
    Magni G; Di Stefano M; Orsomando G; Raffaelli N; Ruggieri S
    Curr Med Chem; 2009; 16(11):1372-90. PubMed ID: 19355893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655.
    Gerdes SY; Scholle MD; Campbell JW; Balázsi G; Ravasz E; Daugherty MD; Somera AL; Kyrpides NC; Anderson I; Gelfand MS; Bhattacharya A; Kapatral V; D'Souza M; Baev MV; Grechkin Y; Mseeh F; Fonstein MY; Overbeek R; Barabási AL; Oltvai ZN; Osterman AL
    J Bacteriol; 2003 Oct; 185(19):5673-84. PubMed ID: 13129938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of enzymes which synthesize nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate in monkey, rabbit, and ground squirrel retinas.
    Berger SJ; DeVries GW
    J Neurochem; 1982 Mar; 38(3):821-6. PubMed ID: 6276511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase.
    Barile M; Passarella S; Danese G; Quagliariello E
    Biochem Mol Biol Int; 1996 Feb; 38(2):297-306. PubMed ID: 8850525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced nicotinamide adenine dinucleotide oxidation in Escherichia coli particles. II. NADH dehydrogenases.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1967 Mar; 119(1):202-8. PubMed ID: 4383199
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein.
    Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV
    mBio; 2015 May; 6(3):e00519-15. PubMed ID: 25944861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thyroxine upon biosynthesis of flavin mononucleotide and flavin adenine dinucleotide.
    Rivlin RS; Langdon RG
    Endocrinology; 1969 Mar; 84(3):584-8. PubMed ID: 4304263
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.