BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12142466)

  • 21. DNA repair in the genomic region containing the beta-actin gene in xeroderma pigmentosum complementation group C and normal human cells.
    Barsalou LS; Kantor GJ; Deiss DM; Hall CE
    Mutat Res; 1994 Jul; 315(1):43-54. PubMed ID: 7517010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells.
    Shivji MK; Eker AP; Wood RD
    J Biol Chem; 1994 Sep; 269(36):22749-57. PubMed ID: 8077226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excision-repair patch lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells.
    Bowman KK; Smith CA; Hanawalt PC
    Mutat Res; 1997 Nov; 385(2):95-105. PubMed ID: 9447231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable transformation of xeroderma pigmentosum group A cells with an XPA minigene restores normal DNA repair and mutagenesis of UV-treated plasmids.
    Myrand SP; Topping RS; States JC
    Carcinogenesis; 1996 Sep; 17(9):1909-17. PubMed ID: 8824513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proneness to UV-induced apoptosis in human fibroblasts defective in transcription coupled repair is associated with the lack of Mdm2 transactivation.
    Conforti G; Nardo T; D'Incalci M; Stefanini M
    Oncogene; 2000 May; 19(22):2714-20. PubMed ID: 10851071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat-shock enhanced reactivation of a UV-damaged reporter gene in human cells involves the transcription coupled DNA repair pathway.
    McKay BC; Rainbow AJ
    Mutat Res; 1996 Jun; 363(2):125-35. PubMed ID: 8676926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes.
    Venema J; van Hoffen A; Karcagi V; Natarajan AT; van Zeeland AA; Mullenders LH
    Mol Cell Biol; 1991 Aug; 11(8):4128-34. PubMed ID: 1649389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Absence of adaptive DNA repair in xeroderma pigmentosum cells].
    Vasil'eva IM; Sinel'shchikova TA; L'vova GN; Meliksetova IA; Zasukhina GD
    Genetika; 1994 Apr; 30(4):484-7. PubMed ID: 8045399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complementation of the DNA repair deficiency in human xeroderma pigmentosum group a and C cells by recombinant adenovirus-mediated gene transfer.
    Muotri AR; Marchetto MC; Zerbini LF; Libermann TA; Ventura AM; Sarasin A; Menck CF
    Hum Gene Ther; 2002 Oct; 13(15):1833-44. PubMed ID: 12396616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair.
    An J; Yang T; Huang Y; Liu F; Sun J; Wang Y; Xu Q; Wu D; Zhou P
    BMC Biochem; 2011 Jan; 12():2. PubMed ID: 21214942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T
    DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis.
    Chen Z; Xu XS; Harrison J; Wang G
    Biochem J; 2004 Apr; 379(Pt 1):71-8. PubMed ID: 14728600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of UV-induced repair patches relative to the nuclear skeleton in human fibroblasts.
    Karmakar P; Natarajan AT
    Mutagenesis; 2000 Mar; 15(2):115-20. PubMed ID: 10719035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The sensitivity of human fibroblasts to N-acetoxy-2-acetylaminofluorene is determined by the extent of transcription-coupled repair, and/or their capability to counteract RNA synthesis inhibition.
    van Oosterwijk MF; Filon R; Kalle WH; Mullenders LH; van Zeeland AA
    Nucleic Acids Res; 1996 Dec; 24(23):4653-9. PubMed ID: 8972850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency.
    Reid-Bayliss KS; Arron ST; Loeb LA; Bezrookove V; Cleaver JE
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10151-6. PubMed ID: 27543334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential roles for p53 in nucleotide excision repair.
    McKay BC; Ljungman M; Rainbow AJ
    Carcinogenesis; 1999 Aug; 20(8):1389-96. PubMed ID: 10426782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excision repair in xeroderma pigmentosum group C cells is regulated differently in transformed cells and primary fibroblasts.
    Cleaver JE
    Biochem Biophys Res Commun; 1988 Oct; 156(1):557-62. PubMed ID: 2845984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair.
    Kamiuchi S; Saijo M; Citterio E; de Jager M; Hoeijmakers JH; Tanaka K
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):201-6. PubMed ID: 11782547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA strand bias in the repair of the p53 gene in normal human and xeroderma pigmentosum group C fibroblasts.
    Evans MK; Taffe BG; Harris CC; Bohr VA
    Cancer Res; 1993 Nov; 53(22):5377-81. PubMed ID: 8221675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A re-examination of the intragenome distribution of repaired sites in proliferating xeroderma pigmentosum complementation group C fibroblasts.
    Kantor GJ; Shanower GA
    Mutat Res; 1992 Nov; 293(1):55-64. PubMed ID: 1383811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.