BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12142493)

  • 1. Heavy metal mining using microbes.
    Rawlings DE
    Annu Rev Microbiol; 2002; 56():65-91. PubMed ID: 12142493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomineralization of metal-containing ores and concentrates.
    Rawlings DE; Dew D; du Plessis C
    Trends Biotechnol; 2003 Jan; 21(1):38-44. PubMed ID: 12480349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics, metagenomics and proteomics in biomining microorganisms.
    Valenzuela L; Chi A; Beard S; Orell A; Guiliani N; Shabanowitz J; Hunt DF; Jerez CA
    Biotechnol Adv; 2006; 24(2):197-211. PubMed ID: 16288845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomining: metal recovery from ores with microorganisms.
    Schippers A; Hedrich S; Vasters J; Drobe M; Sand W; Willscher S
    Adv Biochem Eng Biotechnol; 2014; 141():1-47. PubMed ID: 23793914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermophilic microorganisms in biomining.
    Donati ER; Castro C; Urbieta MS
    World J Microbiol Biotechnol; 2016 Nov; 32(11):179. PubMed ID: 27628339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial catalytic processes for transformation of metals.
    Paknikar KM
    Hindustan Antibiot Bull; 1993; 35(1-2):183-9. PubMed ID: 8181951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.
    Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A
    Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.
    Yahya A; Hallberg KB; Johnson DB
    Arch Microbiol; 2008 Apr; 189(4):305-12. PubMed ID: 18004545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.
    Johnson DB
    Curr Opin Biotechnol; 2014 Dec; 30():24-31. PubMed ID: 24794631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese biomining: A review.
    Das AP; Sukla LB; Pradhan N; Nayak S
    Bioresour Technol; 2011 Aug; 102(16):7381-7. PubMed ID: 21632238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-containing residues from industry and in the environment: geobiotechnological urban mining.
    Glombitza F; Reichel S
    Adv Biochem Eng Biotechnol; 2014; 141():49-107. PubMed ID: 24916202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries.
    Olson GJ; Brierley JA; Brierley CL
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):249-57. PubMed ID: 14566430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.
    Golyshina OV; Timmis KN
    Environ Microbiol; 2005 Sep; 7(9):1277-88. PubMed ID: 16104851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine.
    Kinnunen PH; Puhakka JA
    J Ind Microbiol Biotechnol; 2004 Oct; 31(9):409-14. PubMed ID: 15309637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidophiles in bioreactor mineral processing.
    Norris PR; Burton NP; Foulis NA
    Extremophiles; 2000 Apr; 4(2):71-6. PubMed ID: 10805560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Selective extraction of metals from zinc concentrate by association of chemolithotrophic bacteria].
    Vardanian NS; Vardanian AK
    Prikl Biokhim Mikrobiol; 2011; 47(5):566-71. PubMed ID: 22232898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbes and metals: interactions in the environment.
    Haferburg G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):453-67. PubMed ID: 18072246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].
    Moshchanetskii PV; Pivovarova TA; Belyi AV; Kondrat'eva TF
    Mikrobiologiia; 2014; 83(3):328-35. PubMed ID: 25844443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
    Brierley CL; Brierley JA
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7543-52. PubMed ID: 23877580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.
    Vera M; Schippers A; Sand W
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.