BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12142493)

  • 21. Generation of polluted waters from mining wastes in a uranium deposit.
    Groudev SN; Spasova II; Nicolova MV; Georgiev PS
    Pol J Microbiol; 2005; 54 Suppl():7-11. PubMed ID: 16457374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Functional diversity of indigenous microbial community oxidizing high-content antimony ore at 46-47°C ].
    Tsaplina IA; Zhuravleva AE; Belyĭ AV; kondrat'eva TF
    Mikrobiologiia; 2010; 79(6):748-59. PubMed ID: 21774153
    [No Abstract]   [Full Text] [Related]  

  • 23. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia.
    Rawlings DE; Johnson DB
    Microbiology (Reading); 2007 Feb; 153(Pt 2):315-324. PubMed ID: 17259603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite.
    Khaleque HN; Corbett MK; Ramsay JP; Kaksonen AH; Boxall NJ; Watkin ELJ
    J Biotechnol; 2017 Nov; 262():56-59. PubMed ID: 28986293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates.
    Rawlings DE
    Microb Cell Fact; 2005 May; 4(1):13. PubMed ID: 15877814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and analysis of biooxidation of gold bearing pyrite-arsenopyrite concentrates by Thiobacillus ferrooxidans.
    Chandraprabha MN; Modak JM; Natarajan KA; Raichur AM
    Biotechnol Prog; 2003; 19(4):1244-54. PubMed ID: 12892487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Thermoacidophilic micirobial community oxidizing the gold-bearing flotation concentrate of a pyrite-arsenopyrite ore].
    Paniushkina AE; Tsaplina IA; Grigor'eva NV; Kondrat'eva TF
    Mikrobiologiia; 2014; 83(5):552-64. PubMed ID: 25844467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of acidic treatment of the chemical composition and bacterial oxidation of arsenic-bearing gold concentrate].
    Fomchenko NV; Pivovarova TA; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2008; 44(5):559-64. PubMed ID: 18822776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Applications in Metal Bioleaching.
    Tanne CK; Schippers A
    Adv Biochem Eng Biotechnol; 2019; 167():327-359. PubMed ID: 29224081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomining of metals: how to access and exploit natural resource sustainably.
    Jerez CA
    Microb Biotechnol; 2017 Sep; 10(5):1191-1193. PubMed ID: 28771998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications.
    Banerjee I; Burrell B; Reed C; West AC; Banta S
    Curr Opin Biotechnol; 2017 Jun; 45():144-155. PubMed ID: 28371651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.
    Chaturvedi AD; Pal D; Penta S; Kumar A
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1595-603. PubMed ID: 26250544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S; Krause F; Voordouw G
    Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Gene function and microbial community structure in sulfide minerals bioleaching system based on microarray analysis].
    Shen L; Liu X; Qiu G
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):968-74. PubMed ID: 18807978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The isolation and use of iron-oxidizing, moderately thermophilic acidophiles from the Collie coal mine for the generation of ferric iron leaching solution.
    Kinnunen PH; Robertson WJ; Plumb JJ; Gibson JA; Nichols PD; Franzmann PD; Puhakka JA
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):748-53. PubMed ID: 12664157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides.
    Watlinga HR; Watkinb EL; Ralphe DE
    Environ Technol; 2010; 31(8-9):915-33. PubMed ID: 20662381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.