BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1214285)

  • 1. The nature of the voltage-dependent conductance of the hemocyanin channel.
    Latorre R; Alvarez O; Ehrenstein G; Espinoza M; Reyes J
    J Membr Biol; 1975 Dec; 25(1-2):163-81. PubMed ID: 1214285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent conductance induced by hemocyanin in black lipid films.
    Alvarez O; Diaz E; Latorre R
    Biochim Biophys Acta; 1975 May; 389(3):444-8. PubMed ID: 1125307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dependence of the conductance of the hemocyanin channel on applied potential and ionic concentration with mono- and divalent cations.
    Menestrina G; Antolini R
    Biochim Biophys Acta; 1982 Jun; 688(3):673-84. PubMed ID: 6288088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes.
    Menestrina G; Antolini R
    Biochim Biophys Acta; 1981 May; 643(3):616-25. PubMed ID: 6264956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A different kind of hemocyanin channel in oxidized cholesterol membranes.
    Menestrina G; Antolini R
    Biochem Biophys Res Commun; 1979 May; 88(2):433-9. PubMed ID: 465048
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties of ionic channels formed by Helix pomatia hemocyanin in planar lipid bilayers.
    Menestrina G; Pasquali F; Antolini R
    Biophys Struct Mech; 1984; 10(4):169-84. PubMed ID: 6326882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent conductance induced in thin lipid membranes by monazomycin.
    Muller RU; Finkelstein A
    J Gen Physiol; 1972 Sep; 60(3):263-84. PubMed ID: 5055789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-clamp experiments on oxidized cholesterol membranes modified with excitability-inducing material and comparison with a model.
    Hoffman RA; Long DD; Arndt RA; Roper LD
    Biochim Biophys Acta; 1976 Dec; 455(3):780-95. PubMed ID: 999940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer.
    Ehrenstein G; Blumenthal R; Latorre R; Lecar H
    J Gen Physiol; 1974 Jun; 63(6):707-21. PubMed ID: 4829526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli.
    Benz R; Janko K; Boos W; Läuger P
    Biochim Biophys Acta; 1978 Aug; 511(3):305-19. PubMed ID: 356882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of amphotericin B channels in a lipid bilayer.
    Ermishkin LN; Kasumov KM; Potseluyev VM
    Biochim Biophys Acta; 1977 Nov; 470(3):357-67. PubMed ID: 921960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channels in the chloroplast envelope membrane.
    Heiber T; Steinkamp T; Hinnah S; Schwarz M; Flügge UI; Weber A; Wagner R
    Biochemistry; 1995 Dec; 34(49):15906-17. PubMed ID: 8519747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion conductivity of the open keyhole limpet hemocyanin channel.
    Antolini R; Menestrina G
    FEBS Lett; 1979 Apr; 100(2):377-81. PubMed ID: 456576
    [No Abstract]   [Full Text] [Related]  

  • 15. Temperature characterization of the conductance of the excitability inducing material channel in oxidized cholesterol membranes.
    Latorre R; Alvarez O; Verdugo P
    Biochim Biophys Acta; 1974 Nov; 367(3):361-5. PubMed ID: 4429682
    [No Abstract]   [Full Text] [Related]  

  • 16. On the structure of the hemocyanin channel in lipid bilayers.
    McIntosh TJ; Robertson JD; Ting-Beall HP; Walter A; Zampighi G
    Biochim Biophys Acta; 1980 Sep; 601(2):289-301. PubMed ID: 6250611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh; Alieva IN; Aliev DI
    Tsitologiia; 2003; 45(8):804-11. PubMed ID: 15216632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-barrier model for the hemocyanin channel.
    Cecchi X; Alvarez O; Latorre R
    J Gen Physiol; 1981 Dec; 78(6):657-81. PubMed ID: 6278051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis.
    Blaustein RO; Lea EJ; Finkelstein A
    J Gen Physiol; 1990 Nov; 96(5):921-42. PubMed ID: 1704046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monazomycin-induced single channels. I. Characterization of the elementary conductance events.
    Andersen OS; Muller RU
    J Gen Physiol; 1982 Sep; 80(3):403-26. PubMed ID: 6292330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.