These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12144099)
1. A statistical model for the heterogeneous structure of porous catalyst pellets. Rigby SP; Daut S Adv Colloid Interface Sci; 2002 Jun; 98(2):87-119. PubMed ID: 12144099 [TBL] [Abstract][Full Text] [Related]
2. A Hierarchical Structural Model for the Interpretation of Mercury Porosimetry and Nitrogen Sorption. Rigby SP J Colloid Interface Sci; 2000 Apr; 224(2):382-396. PubMed ID: 10727351 [TBL] [Abstract][Full Text] [Related]
3. Probing the structure of porous pellets: an NMR study of drying. Hollewand MP; Gladden LF Magn Reson Imaging; 1994; 12(2):291-4. PubMed ID: 8170321 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry. Rigby SP; Fletcher RS; Riley SN J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801 [TBL] [Abstract][Full Text] [Related]
5. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767 [TBL] [Abstract][Full Text] [Related]
7. The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data. Rigby SP; Edler KJ J Colloid Interface Sci; 2002 Jun; 250(1):175-90. PubMed ID: 16290649 [TBL] [Abstract][Full Text] [Related]
8. Quantification of Spatial Correlation in Porous Media and Its Effect on Mercury Porosimetry. Bryant S; Mason G; Mellor D J Colloid Interface Sci; 1996 Jan; 177(1):88-100. PubMed ID: 10479420 [TBL] [Abstract][Full Text] [Related]
9. Numerical analysis of NMR diffusion measurements in the short gradient pulse limit. Moroney BF; Stait-Gardner T; Ghadirian B; Yadav NN; Price WS J Magn Reson; 2013 Sep; 234():165-75. PubMed ID: 23887027 [TBL] [Abstract][Full Text] [Related]
10. Simulation of nonwetting phase entrapment within porous media using magnetic resonance imaging. Watt-Smith MJ; Rigby SP; Chudek JA; Fletcher RS Langmuir; 2006 May; 22(11):5180-8. PubMed ID: 16700611 [TBL] [Abstract][Full Text] [Related]
11. Techniques for direct experimental evaluation of structure-transport relationships in disordered porous solids. Nepryahin A; Fletcher RS; Holt EM; Rigby SP Adsorption (Boston); 2016; 22(7):993-1000. PubMed ID: 32269424 [TBL] [Abstract][Full Text] [Related]
12. Influence on permeability of the structural parameters of heterogeneous porous media. Le Coq L Environ Technol; 2008 Feb; 29(2):141-9. PubMed ID: 18613613 [TBL] [Abstract][Full Text] [Related]
13. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Xiong Q; Baychev TG; Jivkov AP J Contam Hydrol; 2016 Sep; 192():101-117. PubMed ID: 27442725 [TBL] [Abstract][Full Text] [Related]
14. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets]. Szepes A; Kovács J; Szabóné Revész P Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658 [TBL] [Abstract][Full Text] [Related]
15. AFM-porosimetry: density and pore volume measurements of particulate materials. Sörensen MH; Valle-Delgado JJ; Corkery RW; Rutland MW; Alberius PC Langmuir; 2008 Jun; 24(13):7024-30. PubMed ID: 18503284 [TBL] [Abstract][Full Text] [Related]