These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 12144353)
1. Backbone structure confirmation and side chain conformation refinement of a bradykinin mimic BKM-824 by comparing calculated (1)H, (13)C and (19)F chemical shifts with experiment. Wang B; Miskolizie M; Kotovych G; Pulay P J Biomol Struct Dyn; 2002 Aug; 20(1):71-80. PubMed ID: 12144353 [TBL] [Abstract][Full Text] [Related]
2. An NMR conformational analysis of cyclic bradykinin mimics. Evidence for a beta-turn. Miskolzie M; Yamamoto H; York EJ; Stewart JM; Kotovych G J Biomol Struct Dyn; 2000 Jun; 17(6):947-55. PubMed ID: 10949162 [TBL] [Abstract][Full Text] [Related]
3. Correlation of secondary structures of bradykinin B1 receptor antagonists with their activity. Miskolzie M; Gera L; Stewart JM; Kotovych G J Biomol Struct Dyn; 2002 Feb; 19(4):585-93. PubMed ID: 11843620 [TBL] [Abstract][Full Text] [Related]
4. The importance of the N-terminal beta-turn in bradykinin antagonists. Miskolzie M; Gera L; Stewart JM; Kotovych G J Biomol Struct Dyn; 2000 Oct; 18(2):249-60. PubMed ID: 11089646 [TBL] [Abstract][Full Text] [Related]
5. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory. Xu XP; Case DA Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429 [TBL] [Abstract][Full Text] [Related]
6. An NMR, CD, molecular dynamics, and fluorometric study of the conformation of the bradykinin antagonist B-9340 in water and in aqueous micellar solutions. Sejbal J; Cann JR; Stewart JM; Gera L; Kotovych G J Med Chem; 1996 Mar; 39(6):1281-92. PubMed ID: 8632435 [TBL] [Abstract][Full Text] [Related]
7. A comparative NMR and molecular dynamics study of the conformations of bradykinin B1 and B2, B2, and B1-specific receptor antagonists B-9430, B-9436, and B-9858. Sejbal J; Wang Y; Cann JR; Stewart JM; Gera L; Kotovych G Biopolymers; 1997 Oct; 42(5):521-35. PubMed ID: 9322442 [TBL] [Abstract][Full Text] [Related]
8. Toward direct determination of conformations of protein building units from multidimensional NMR experiments. V. NMR chemical shielding analysis of N-formyl-serinamide, a model for polar side-chain containing peptides. Perczel A; Füzéry AK; Császár AG J Comput Chem; 2003 Jul; 24(10):1157-71. PubMed ID: 12820123 [TBL] [Abstract][Full Text] [Related]
9. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information. Hudáky P; Perczel A J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335 [TBL] [Abstract][Full Text] [Related]
10. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional solution structure of mu-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Hill JM; Alewood PF; Craik DJ Biochemistry; 1996 Jul; 35(27):8824-35. PubMed ID: 8688418 [TBL] [Abstract][Full Text] [Related]
12. Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. Watts HD; Mohamed MN; Kubicki JD J Phys Chem B; 2011 Mar; 115(9):1958-70. PubMed ID: 21319787 [TBL] [Abstract][Full Text] [Related]
13. Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. Fonville JM; Swart M; Vokáčová Z; Sychrovský V; Šponer JE; Šponer J; Hilbers CW; Bickelhaupt FM; Wijmenga SS Chemistry; 2012 Sep; 18(39):12372-87. PubMed ID: 22899588 [TBL] [Abstract][Full Text] [Related]
14. A CD and an NMR study of multiple bradykinin conformations in aqueous trifluoroethanol solutions. Cann JR; Liu X; Stewart JM; Gera L; Kotovych G Biopolymers; 1994 Jul; 34(7):869-78. PubMed ID: 8054469 [TBL] [Abstract][Full Text] [Related]
15. DFT study of (17)O, (1)H and (13)C NMR chemical shifts in two forms of native cellulose, I(α) and I(β). Esrafili MD; Ahmadin H Carbohydr Res; 2012 Jan; 347(1):99-106. PubMed ID: 22129840 [TBL] [Abstract][Full Text] [Related]
16. 1H chemical shifts in NMR. Part 20--anisotropic and steric effects in halogen substituent chemical shifts (SCS), a modelling and ab initio investigation. Abraham RJ; Mobli M; Smith RJ Magn Reson Chem; 2004 May; 42(5):436-44. PubMed ID: 15095379 [TBL] [Abstract][Full Text] [Related]
17. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. Justino LL; Ramos ML; Abreu PE; Carvalho RA; Sobral AJ; Scherf U; Burrows HD J Phys Chem B; 2009 Sep; 113(35):11808-21. PubMed ID: 19663434 [TBL] [Abstract][Full Text] [Related]
18. A theoretical case study of type I and type II beta-turns. Czinki E; Császár AG; Perczel A Chemistry; 2003 Mar; 9(5):1182-91. PubMed ID: 12596154 [TBL] [Abstract][Full Text] [Related]
19. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy. Bhate MP; Woodard JC; Mehta MA J Am Chem Soc; 2009 Jul; 131(27):9579-89. PubMed ID: 19537718 [TBL] [Abstract][Full Text] [Related]
20. Local protein backbone folds determined by calculated NMR chemical shifts. Czajlik A; Hudáky I; Perczel A J Comput Chem; 2011 Dec; 32(16):3362-82. PubMed ID: 21905050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]