These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 12144467)
1. Polynomial-time simulation of pairing models on a quantum computer. Wu LA; Byrd MS; Lidar DA Phys Rev Lett; 2002 Jul; 89(5):057904. PubMed ID: 12144467 [TBL] [Abstract][Full Text] [Related]
2. Mesoscopic competition of superconductivity and ferromagnetism: conductance peak statistics for metallic grains. Schmidt S; Alhassid Y Phys Rev Lett; 2008 Nov; 101(20):207003. PubMed ID: 19113370 [TBL] [Abstract][Full Text] [Related]
3. Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Brown KR; Clark RJ; Chuang IL Phys Rev Lett; 2006 Aug; 97(5):050504. PubMed ID: 17026087 [TBL] [Abstract][Full Text] [Related]
5. Semiclassical theory of Bardeen-Cooper-Schrieffer pairing-gap fluctuations. Olofsson H; Aberg S; Leboeuf P Phys Rev Lett; 2008 Jan; 100(3):037005. PubMed ID: 18233029 [TBL] [Abstract][Full Text] [Related]
6. Integrable model for interacting electrons in metallic grains. Amico L; Di Lorenzo A; Osterloh A Phys Rev Lett; 2001 Jun; 86(25):5759-62. PubMed ID: 11415351 [TBL] [Abstract][Full Text] [Related]
7. Quantum adiabatic computation with a constant gap is not useful in one dimension. Hastings MB Phys Rev Lett; 2009 Jul; 103(5):050502. PubMed ID: 19792471 [TBL] [Abstract][Full Text] [Related]
8. Ultra-small metallic grains: effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa. Croitoru MD; Shanenko AA; Kaun CC; Peeters FM J Phys Condens Matter; 2012 Jul; 24(27):275701. PubMed ID: 22718693 [TBL] [Abstract][Full Text] [Related]
9. Theoretical evidence for equivalence between the ground states of the strong coupling BCS Hamiltonian and the antiferromagnetic Heisenberg model. Park K Phys Rev Lett; 2005 Jul; 95(2):027001. PubMed ID: 16090709 [TBL] [Abstract][Full Text] [Related]
10. Quantum error suppression with commuting Hamiltonians: two local is too local. Marvian I; Lidar DA Phys Rev Lett; 2014 Dec; 113(26):260504. PubMed ID: 25615294 [TBL] [Abstract][Full Text] [Related]
11. Universal broadening of the Bardeen-Cooper-Schrieffer coherence peak of disordered superconducting films. Feigel'man MV; Skvortsov MA Phys Rev Lett; 2012 Oct; 109(14):147002. PubMed ID: 23083269 [TBL] [Abstract][Full Text] [Related]
12. Quantum simulation of classical thermal states. Dür W; Van den Nest M Phys Rev Lett; 2011 Oct; 107(17):170402. PubMed ID: 22107489 [TBL] [Abstract][Full Text] [Related]
13. Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealing. Ohzeki M Sci Rep; 2017 Jan; 7():41186. PubMed ID: 28112244 [TBL] [Abstract][Full Text] [Related]
14. Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models. Rubio-García A; Alcoba DR; Capuzzi P; Dukelsky J J Chem Theory Comput; 2018 Aug; 14(8):4183-4192. PubMed ID: 29906104 [TBL] [Abstract][Full Text] [Related]
15. Transitionless quantum driving for spin systems. Takahashi K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062117. PubMed ID: 23848637 [TBL] [Abstract][Full Text] [Related]
17. Prediction of spectroscopic constants for diatomic molecules in the ground and excited states using time-dependent density functional theory. Falzon CT; Chong DP; Wang F J Comput Chem; 2006 Jan; 27(2):163-73. PubMed ID: 16312016 [TBL] [Abstract][Full Text] [Related]
18. Comment on "polynomial-time simulation of pairing models on a quantum computer". Dukelsky J; Román JM; Sierra G Phys Rev Lett; 2003 Jun; 90(24):249803; discussion 249804. PubMed ID: 12857238 [No Abstract] [Full Text] [Related]
19. Polynomial fuzzy observer designs: a sum-of-squares approach. Tanaka K; Ohtake H; Seo T; Tanaka M; Wang HO IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1330-42. PubMed ID: 22510951 [TBL] [Abstract][Full Text] [Related]
20. Re-entrant spin susceptibility of a superconducting grain. Di Lorenzo A ; Fazio R; Hekking FW; Falci G; Mastellone A; Giaquinta G Phys Rev Lett; 2000 Jan; 84(3):550-3. PubMed ID: 11015961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]