These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 12144483)
1. Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation. Skryabin DV; Vladimirov AG Phys Rev Lett; 2002 Jul; 89(4):044101. PubMed ID: 12144483 [TBL] [Abstract][Full Text] [Related]
2. Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation. Mihalache D; Mazilu D; Lederer F; Kartashov YV; Crasovan LC; Torner L; Malomed BA Phys Rev Lett; 2006 Aug; 97(7):073904. PubMed ID: 17026230 [TBL] [Abstract][Full Text] [Related]
3. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. Crasovan LC; Malomed BA; Mihalache D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016605. PubMed ID: 11304376 [TBL] [Abstract][Full Text] [Related]
4. Collisions between counter-rotating solitary vortices in the three-dimensional Ginzburg-Landau equation. Mihalache D; Mazilu D; Lederer F; Leblond H; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056601. PubMed ID: 19113227 [TBL] [Abstract][Full Text] [Related]
5. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion. Li H; Lai S; Qui Y; Zhu X; Xie J; Mihalache D; He Y Opt Express; 2017 Oct; 25(22):27948-27967. PubMed ID: 29092262 [TBL] [Abstract][Full Text] [Related]
6. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation. Madruga S; Riecke H; Pesch W Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097 [TBL] [Abstract][Full Text] [Related]
7. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation. Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250 [TBL] [Abstract][Full Text] [Related]
8. Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation. Liu B; Liu YF; He XD Opt Express; 2014 Oct; 22(21):26203-11. PubMed ID: 25401652 [TBL] [Abstract][Full Text] [Related]
9. Non-unique results of collisions of quasi-one-dimensional dissipative solitons. Descalzi O; Brand HR Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2056):. PubMed ID: 26527813 [TBL] [Abstract][Full Text] [Related]
10. Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation. Zhang S; Hu B; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016214. PubMed ID: 12636592 [TBL] [Abstract][Full Text] [Related]
11. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation. Rousseau G; Chaté H; Kapral R Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505 [TBL] [Abstract][Full Text] [Related]
12. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Tsoy EN; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691 [TBL] [Abstract][Full Text] [Related]
13. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Paulau PV; Gomila D; Colet P; Malomed BA; Firth WJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036213. PubMed ID: 22060481 [TBL] [Abstract][Full Text] [Related]
14. Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation. Gutiérrez P; Escaff D; Descalzi O Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3227-38. PubMed ID: 19620120 [TBL] [Abstract][Full Text] [Related]
15. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Skarka V; Aleksić NB Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455 [TBL] [Abstract][Full Text] [Related]
16. Interaction of spiral waves in the complex Ginzburg-Landau equation. Aguareles M; Chapman SJ; Witelski T Phys Rev Lett; 2008 Nov; 101(22):224101. PubMed ID: 19113484 [TBL] [Abstract][Full Text] [Related]
17. Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry. Descalzi O; Cisternas J; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065201. PubMed ID: 17280110 [TBL] [Abstract][Full Text] [Related]
18. Chirality effect on the global structure of spiral-domain patterns in the two-dimensional complex Ginzburg-Landau equation. Zhan M; Luo J; Gao J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016214. PubMed ID: 17358242 [TBL] [Abstract][Full Text] [Related]
19. Time-delay autosynchronization control of defect turbulence in the cubic-quintic complex Ginzburg-Landau equation. Gonpe Tafo JB; Nana L; Kofane TC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032911. PubMed ID: 24125329 [TBL] [Abstract][Full Text] [Related]
20. Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation. He YJ; Fan HH; Dong JW; Wang HZ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016611. PubMed ID: 16907208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]