These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Projective quantum monte carlo method for the anderson impurity model and its application to dynamical mean field theory. Feldbacher M; Held K; Assaad FF Phys Rev Lett; 2004 Sep; 93(13):136405. PubMed ID: 15524746 [TBL] [Abstract][Full Text] [Related]
8. Cluster dynamical mean field analysis of the mott transition. Parcollet O; Biroli G; Kotliar G Phys Rev Lett; 2004 Jun; 92(22):226402. PubMed ID: 15245242 [TBL] [Abstract][Full Text] [Related]
9. Finite doping signatures of the Mott transition in the two-dimensional Hubbard model. Sordi G; Haule K; Tremblay AM Phys Rev Lett; 2010 Jun; 104(22):226402. PubMed ID: 20867185 [TBL] [Abstract][Full Text] [Related]
10. Phase separation close to the density-driven Mott transition in the Hubbard-Holstein model. Capone M; Sangiovanni G; Castellani C; Di Castro C; Grilli M Phys Rev Lett; 2004 Mar; 92(10):106401. PubMed ID: 15089222 [TBL] [Abstract][Full Text] [Related]
11. Finite-temperature phase transitions in a two-dimensional boson Hubbard model. Cha MC; Lee JW Phys Rev Lett; 2007 Jun; 98(26):266406. PubMed ID: 17678114 [TBL] [Abstract][Full Text] [Related]
12. Cluster dynamical mean field theory of the Mott transition. Park H; Haule K; Kotliar G Phys Rev Lett; 2008 Oct; 101(18):186403. PubMed ID: 18999845 [TBL] [Abstract][Full Text] [Related]
13. Mott insulators and the doping-induced Mott transition within DMFT: exact results for the one-band Hubbard model. Logan DE; Galpin MR J Phys Condens Matter; 2016 Jan; 28(2):025601. PubMed ID: 26658417 [TBL] [Abstract][Full Text] [Related]
14. Finite temperature mott transition in hubbard model on anisotropic triangular lattice. Ohashi T; Momoi T; Tsunetsugu H; Kawakami N Phys Rev Lett; 2008 Feb; 100(7):076402. PubMed ID: 18352576 [TBL] [Abstract][Full Text] [Related]
15. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory. Feng Q; Oppeneer PM J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899 [TBL] [Abstract][Full Text] [Related]
16. Quasi-continuous-time impurity solver for the dynamical mean-field theory with linear scaling in the inverse temperature. Rost D; Assaad F; Blümer N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053305. PubMed ID: 23767655 [TBL] [Abstract][Full Text] [Related]
17. Disproportionation and metallization at low-spin to high-spin transition in multiorbital Mott systems. Kuneš J; Křápek V Phys Rev Lett; 2011 Jun; 106(25):256401. PubMed ID: 21770658 [TBL] [Abstract][Full Text] [Related]
18. Metal-insulator transitions in the periodic Anderson model. Sordi G; Amaricci A; Rozenberg MJ Phys Rev Lett; 2007 Nov; 99(19):196403. PubMed ID: 18233094 [TBL] [Abstract][Full Text] [Related]
19. Finite-size scaling for quantum criticality above the upper critical dimension: Superfluid-Mott-insulator transition in three dimensions. Kato Y; Kawashima N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011123. PubMed ID: 20365339 [TBL] [Abstract][Full Text] [Related]