BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12144506)

  • 1. Functional expression of human methionine aminopeptidase type 1 in Saccharomyces cerevisiae.
    Dummitt B; Fei Y; Chang YH
    Protein Pept Lett; 2002 Aug; 9(4):295-303. PubMed ID: 12144506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo.
    Vetro JA; Chang YH
    J Cell Biochem; 2002; 85(4):678-88. PubMed ID: 11968008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases.
    Li X; Chang YH
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12357-61. PubMed ID: 8618900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2.
    Klinkenberg M; Ling C; Chang YH
    Arch Biochem Biophys; 1997 Nov; 347(2):193-200. PubMed ID: 9367524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae.
    Chen S; Vetro JA; Chang YH
    Arch Biochem Biophys; 2002 Feb; 398(1):87-93. PubMed ID: 11811952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth.
    Zuo S; Guo Q; Ling C; Chang YH
    Mol Gen Genet; 1995 Jan; 246(2):247-53. PubMed ID: 7862096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal methionine removal and methionine metabolism in Saccharomyces cerevisiae.
    Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2003 Aug; 89(5):964-74. PubMed ID: 12874831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in Saccharomyces cerevisiae.
    Vetro JA; Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2005 Mar; 94(4):656-68. PubMed ID: 15547949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes.
    Arfin SM; Kendall RL; Hall L; Weaver LH; Stewart AE; Matthews BW; Bradshaw RA
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7714-8. PubMed ID: 7644482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning, sequencing, deletion, and overexpression of a methionine aminopeptidase gene from Saccharomyces cerevisiae.
    Chang YH; Teichert U; Smith JA
    J Biol Chem; 1992 Apr; 267(12):8007-11. PubMed ID: 1569059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single amino acid residue defines the difference in ovalicin sensitivity between type I and II methionine aminopeptidases.
    Brdlik CM; Crews CM
    J Biol Chem; 2004 Mar; 279(10):9475-80. PubMed ID: 14676204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity?
    Walker KW; Bradshaw RA
    Protein Sci; 1998 Dec; 7(12):2684-7. PubMed ID: 9865965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2.
    Sin N; Meng L; Wang MQ; Wen JJ; Bornmann WG; Crews CM
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6099-103. PubMed ID: 9177176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast (Saccharomyces cerevisiae) methionine aminopeptidase I: rapid purification and improved activity assay.
    Walker KW; Yi E; Bradshaw RA
    Biotechnol Appl Biochem; 1999 Apr; 29(2):157-63. PubMed ID: 10075912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis.
    Walker KW; Bradshaw RA
    J Biol Chem; 1999 May; 274(19):13403-9. PubMed ID: 10224104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast glutamine-fructose-6-phosphate aminotransferase (Gfa1) requires methionine aminopeptidase activity for proper function.
    Dummitt B; Micka WS; Chang YH
    J Biol Chem; 2005 Apr; 280(14):14356-60. PubMed ID: 15699032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
    Li JY; Cui YM; Chen LL; Gu M; Li J; Nan FJ; Ye QZ
    J Biol Chem; 2004 May; 279(20):21128-34. PubMed ID: 14976199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine aminopeptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: molecular cloning and overexpression in Escherichia coli of the gene, and characteristics of the enzyme.
    Tsunasawa S; Izu Y; Miyagi M; Kato I
    J Biochem; 1997 Oct; 122(4):843-50. PubMed ID: 9399590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase.
    Pasquini M; Grosjean N; Hixson KK; Nicora CD; Yee EF; Lipton M; Blaby IK; Haley JD; Blaby-Haas CE
    Cell Rep; 2022 May; 39(7):110834. PubMed ID: 35584675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.