BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12145197)

  • 1. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD.
    Katzen F; Deshmukh M; Daldal F; Beckwith J
    EMBO J; 2002 Aug; 21(15):3960-9. PubMed ID: 12145197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli.
    Cho SH; Beckwith J
    J Bacteriol; 2006 Jul; 188(14):5066-76. PubMed ID: 16816179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade.
    Katzen F; Beckwith J
    Cell; 2000 Nov; 103(5):769-79. PubMed ID: 11114333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants.
    Deshmukh M; Turkarslan S; Astor D; Valkova-Valchanova M; Daldal F
    J Bacteriol; 2003 Jun; 185(11):3361-72. PubMed ID: 12754234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli.
    Stewart EJ; Katzen F; Beckwith J
    EMBO J; 1999 Nov; 18(21):5963-71. PubMed ID: 10545108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm.
    Chung J; Chen T; Missiakas D
    Mol Microbiol; 2000 Mar; 35(5):1099-109. PubMed ID: 10712691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD.
    Goulding CW; Sawaya MR; Parseghian A; Lim V; Eisenberg D; Missiakas D
    Biochemistry; 2002 Jun; 41(22):6920-7. PubMed ID: 12033924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity(1).
    Kim JH; Kim SJ; Jeong DG; Son JH; Ryu SE
    FEBS Lett; 2003 May; 543(1-3):164-9. PubMed ID: 12753926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory thio-redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome c maturation.
    Turkarslan S; Sanders C; Ekici S; Daldal F
    Mol Microbiol; 2008 Nov; 70(3):652-66. PubMed ID: 18786143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12.
    Metheringham R; Tyson KL; Crooke H; Missiakas D; Raina S; Cole JA
    Mol Gen Genet; 1996 Nov; 253(1-2):95-102. PubMed ID: 9003292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
    Bushweller JH
    J Mol Biol; 2020 Aug; 432(18):5091-5103. PubMed ID: 32305461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases.
    Porat A; Cho SH; Beckwith J
    Res Microbiol; 2004 Oct; 155(8):617-22. PubMed ID: 15380548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III.
    Richard-Fogal CL; San Francisco B; Frawley ER; Kranz RG
    Biochim Biophys Acta; 2012 Jun; 1817(6):911-9. PubMed ID: 21945855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DsbC activation by the N-terminal domain of DsbD.
    Goldstone D; Haebel PW; Katzen F; Bader MW; Bardwell JC; Beckwith J; Metcalf P
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9551-6. PubMed ID: 11493705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the intramolecular disulfide exchange between the periplasmic domains of DsbD.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2007 Apr; 367(4):1162-70. PubMed ID: 17303162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic aspects of DsbD-mediated electron transport.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2008 Jul; 380(5):783-8. PubMed ID: 18571669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interchangeable modules in bacterial thiol-disulfide exchange pathways.
    Kouwen TR; van Dijl JM
    Trends Microbiol; 2009 Jan; 17(1):6-12. PubMed ID: 19059781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thioreduction pathway tethered to the membrane for periplasmic cytochromes c biogenesis; in vitro and in vivo studies.
    Monika EM; Goldman BS; Beckman DL; Kranz RG
    J Mol Biol; 1997 Sep; 271(5):679-92. PubMed ID: 9299319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex.
    Haebel PW; Goldstone D; Katzen F; Beckwith J; Metcalf P
    EMBO J; 2002 Sep; 21(18):4774-84. PubMed ID: 12234918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD.
    Katzen F; Beckwith J
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10471-6. PubMed ID: 12925743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.