These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12145639)

  • 1. A unique serine-specific elongation factor Tu found in nematode mitochondria.
    Ohtsuki T; Sato A; Watanabe Y; Watanabe K
    Nat Struct Biol; 2002 Sep; 9(9):669-73. PubMed ID: 12145639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication of
    Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI
    Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-armless tRNAs and elongated elongation factor Tu.
    Ohtsuki T; Watanabe Y
    IUBMB Life; 2007 Feb; 59(2):68-75. PubMed ID: 17454297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protein extension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria.
    Sakurai M; Watanabe Y; Watanabe K; Ohtsuki T
    Biochem J; 2006 Oct; 399(2):249-56. PubMed ID: 16859488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2.
    Suematsu T; Sato A; Sakurai M; Watanabe K; Ohtsuki T
    Nucleic Acids Res; 2005; 33(15):4683-91. PubMed ID: 16113240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu.
    Arita M; Suematsu T; Osanai A; Inaba T; Kamiya H; Kita K; Sisido M; Watanabe Y; Ohtsuki T
    Nucleic Acids Res; 2006; 34(18):5291-9. PubMed ID: 17012285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation.
    LaRiviere FJ; Wolfson AD; Uhlenbeck OC
    Science; 2001 Oct; 294(5540):165-8. PubMed ID: 11588263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm.
    Sakurai M; Ohtsuki T; Watanabe K
    Nucleic Acids Res; 2005; 33(5):1653-61. PubMed ID: 15781491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid.
    Dale T; Sanderson LE; Uhlenbeck OC
    Biochemistry; 2004 May; 43(20):6159-66. PubMed ID: 15147200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An "elongated" translation elongation factor Tu for truncated tRNAs in nematode mitochondria.
    Ohtsuki T; Watanabe Yi ; Takemoto C; Kawai G; Ueda T; Kita K; Kojima S; Kaziro Y; Nyborg J; Watanabe K
    J Biol Chem; 2001 Jun; 276(24):21571-7. PubMed ID: 11262399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system.
    Doi Y; Ohtsuki T; Shimizu Y; Ueda T; Sisido M
    J Am Chem Soc; 2007 Nov; 129(46):14458-62. PubMed ID: 17958427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid specificity in translation.
    Dale T; Uhlenbeck OC
    Trends Biochem Sci; 2005 Dec; 30(12):659-65. PubMed ID: 16260144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the residues involved in the unique serine specificity of Caenorhabditis elegans mitochondrial EF-Tu2.
    Sato A; Watanabe Y; Suzuki T; Komiyama M; Watanabe K; Ohtsuki T
    Biochemistry; 2006 Sep; 45(36):10920-7. PubMed ID: 16953577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria.
    Nagao A; Suzuki T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):41-2. PubMed ID: 18029576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast.
    Chiron S; Suleau A; Bonnefoy N
    Genetics; 2005 Apr; 169(4):1891-901. PubMed ID: 15695360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of mitochondrial elongation factors Tu.Ts with aminoacyl-tRNA.
    Benkowski LA; Takemoto C; Ott G; Beikman M; Ueda T; Watanabe K; Sprinzl M; Spremulli LL
    Nucleic Acids Symp Ser; 1995; (33):163-6. PubMed ID: 8643359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer RNAs: electrostatic patterns and an early stage of recognition by synthetases and elongation factor EF-Tu.
    Polozov RV; Montrel M; Ivanov VV; Melnikov Y; Sivozhelezov VS
    Biochemistry; 2006 Apr; 45(14):4481-90. PubMed ID: 16584184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity.
    Roy H; Becker HD; Mazauric MH; Kern D
    Nucleic Acids Res; 2007; 35(10):3420-30. PubMed ID: 17478519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.