BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 12146946)

  • 1. Extracellular domains, transmembrane segments, and intracellular domains interact to determine the cation selectivity of Na,K- and gastric H,K-ATPase.
    Mense M; Rajendran V; Blostein R; Caplan MJ
    Biochemistry; 2002 Aug; 41(31):9803-12. PubMed ID: 12146946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues of the fourth transmembrane segments of the Na,K-ATPase and the gastric H,K-ATPase contribute to cation selectivity.
    Mense M; Dunbar LA; Blostein R; Caplan MJ
    J Biol Chem; 2000 Jan; 275(3):1749-56. PubMed ID: 10636871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation selectivity of gastric H,K-ATPase and Na,K-ATPase chimeras.
    Blostein R; Dunbar L; Mense M; Scanzano R; Wilczynska A; Caplan MJ
    J Biol Chem; 1999 Jun; 274(26):18374-81. PubMed ID: 10373442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric domain analysis of the compatibility between H(+), K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits for the functional expression of gastric H(+),K(+)-ATPase.
    Asano S; Kimura T; Ueno S; Kawamura M; Takeguchi N
    J Biol Chem; 1999 Aug; 274(32):22257-65. PubMed ID: 10428793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation stoichiometry and cation pathway in the Na,K-ATPase and nongastric H,K-ATPase.
    Horisberger JD; Guennoun S; Burnay M; Geering K
    Ann N Y Acad Sci; 2003 Apr; 986():127-32. PubMed ID: 12763785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain swapping between Na,K- and H,K-ATPase identifies regions that specify Na,K-ATPase activity.
    Canfield VA; Levenson R
    Biochemistry; 1998 May; 37(20):7509-16. PubMed ID: 9585565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity.
    Sánchez G; Blanco G
    Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na,K-pumps.
    Jaunin P; Jaisser F; Beggah AT; Takeyasu K; Mangeat P; Rossier BC; Horisberger JD; Geering K
    J Cell Biol; 1993 Dec; 123(6 Pt 2):1751-9. PubMed ID: 8276895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the K+-competitive inhibitor site of gastric H,K-ATPase.
    Vagin O; Munson K; Lambrecht N; Karlish SJ; Sachs G
    Biochemistry; 2001 Jun; 40(25):7480-90. PubMed ID: 11412101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A basolateral sorting signal is encoded in the alpha-subunit of Na-K-ATPase.
    Muth TR; Gottardi CJ; Roush DL; Caplan MJ
    Am J Physiol; 1998 Mar; 274(3):C688-96. PubMed ID: 9530100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase.
    Dunbar LA; Aronson P; Caplan MJ
    J Cell Biol; 2000 Feb; 148(4):769-78. PubMed ID: 10684257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E2P state stabilization by the N-terminal tail of the H,K-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions.
    Dürr KL; Abe K; Tavraz NN; Friedrich T
    J Biol Chem; 2009 Jul; 284(30):20147-54. PubMed ID: 19491099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine substitution of a cysteine in transmembrane helix M8 converts Na+,K+-ATPase to an electroneutral pump similar to H+,K+-ATPase.
    Holm R; Khandelwal J; Einholm AP; Andersen JP; Artigas P; Vilsen B
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):316-321. PubMed ID: 28028214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic function of nongastric H,K-ATPase expressed in Sf-21 insect cells.
    Adams G; Tillekeratne M; Yu C; Pestov NB; Modyanov NN
    Biochemistry; 2001 May; 40(19):5765-76. PubMed ID: 11341842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional properties of an H,K-ATPase/Na,K-ATPase chimera.
    Blostein R; Zhang R; Gottardi CJ; Caplan MJ
    J Biol Chem; 1993 May; 268(14):10654-8. PubMed ID: 8387526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the chimeric Na+/K+-ATPase and H+/K+-ATPase beta-subunit with the Na+/K+-ATPase alpha-subunit.
    Ueno S; Takeda K; Izumi F; Futai M; Schwarz W; Kawamura M
    Biochim Biophys Acta; 1997 Dec; 1330(2):217-24. PubMed ID: 9408175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional significance of E2 state stabilization by specific alpha/beta-subunit interactions of Na,K- and H,K-ATPase.
    Dürr KL; Tavraz NN; Dempski RE; Bamberg E; Friedrich T
    J Biol Chem; 2009 Feb; 284(6):3842-54. PubMed ID: 19064992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of Na+/K(+)-ATPase mediated proton current in Na(+)- and K(+)-free extracellular solutions. Indications for kinetic similarities between H+/K(+)-ATPase and Na+/K(+)-ATPase.
    Rettinger J
    Biochim Biophys Acta; 1996 Jul; 1282(2):207-15. PubMed ID: 8703975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression of gastric H+,K(+)-ATPase and site-directed mutagenesis of the putative cation binding site and catalytic center.
    Asano S; Tega Y; Konishi K; Fujioka M; Takeguchi N
    J Biol Chem; 1996 Feb; 271(5):2740-5. PubMed ID: 8576249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational alterations resulting from mutations in cytoplasmic domains of the alpha subunit of the Na,K-ATPase.
    Blostein R; Daly SE; Boxenbaum N; Lane LK; Arguello JM; Lingrel JB; Karlish SJ; Caplan MJ; Dunbar L
    Acta Physiol Scand Suppl; 1998 Aug; 643():275-81. PubMed ID: 9789570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.