BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12147584)

  • 1. Microarray analysis of gene expression in the aging human retina.
    Yoshida S; Yashar BM; Hiriyanna S; Swaroop A
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2554-60. PubMed ID: 12147584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray.
    Chowers I; Gunatilaka TL; Farkas RH; Qian J; Hackam AS; Duh E; Kageyama M; Wang C; Vora A; Campochiaro PA; Zack DJ
    Invest Ophthalmol Vis Sci; 2003 Sep; 44(9):3732-41. PubMed ID: 12939286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Overexpression of thymosin beta4 in the cochlea of senescence-accelerated mouse].
    Wang YS; Asamura K; Usami S
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2004 Dec; 39(12):717-20. PubMed ID: 15813012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray-based gene expression analysis during retinal maturation of albino rats.
    Ben-Shlomo G; Ofri R; Bandah D; Rosner M; Sharon D
    Graefes Arch Clin Exp Ophthalmol; 2008 May; 246(5):693-702. PubMed ID: 18286297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel retinal genes discovered by mining the mouse embryonic RetinalExpress database.
    Liang S; Zhao S; Mu X; Thomas T; Klein WH
    Mol Vis; 2004 Oct; 10():773-86. PubMed ID: 15496829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative gene expression analysis of murine retina and brain.
    Hackam AS; Qian J; Liu D; Gunatilaka T; Farkas RH; Chowers I; Kageyama M; Parmigiani G; Zack DJ
    Mol Vis; 2004 Aug; 10():637-49. PubMed ID: 15359217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in the transcriptional profile of mouse RPE/choroid.
    Ida H; Boylan SA; Weigel AL; Hjelmeland LM
    Physiol Genomics; 2003 Nov; 15(3):258-62. PubMed ID: 14519767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of signaling pathways and stress-response genes in an experimental model of retinal detachment.
    Zacks DN; Han Y; Zeng Y; Swaroop A
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1691-5. PubMed ID: 16565410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel bovine RPE and retinal genes by subtractive hybridization.
    Sharma S; Chang JT; Della NG; Campochiaro PA; Zack DJ
    Mol Vis; 2002 Jul; 8():251-8. PubMed ID: 12131876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays.
    Yu J; Othman MI; Farjo R; Zareparsi S; MacNee SP; Yoshida S; Swaroop A
    Mol Vis; 2002 Apr; 8():130-7. PubMed ID: 12011805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray analysis of retinal gene expression in Egr-1 knockout mice.
    Schippert R; Schaeffel F; Feldkaemper MP
    Mol Vis; 2009 Dec; 15():2720-39. PubMed ID: 20019881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel retinal and cone photoreceptor transcripts revealed by human macular expression profiling.
    Hornan DM; Peirson SN; Hardcastle AJ; Molday RS; Cheetham ME; Webster AR
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5388-96. PubMed ID: 18055785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey.
    Miyahara T; Kikuchi T; Akimoto M; Kurokawa T; Shibuki H; Yoshimura N
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4347-56. PubMed ID: 14507879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal changes in gene expression after injury in the rat retina.
    Vázquez-Chona F; Song BK; Geisert EE
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2737-46. PubMed ID: 15277499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms.
    Yang Z; Quigley HA; Pease ME; Yang Y; Qian J; Valenta D; Zack DJ
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5539-48. PubMed ID: 18055803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy.
    Ishikawa K; Yoshida S; Kadota K; Nakamura T; Niiro H; Arakawa S; Yoshida A; Akashi K; Ishibashi T
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4307-19. PubMed ID: 20220049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina.
    Hollborn M; Francke M; Iandiev I; Bühner E; Foja C; Kohen L; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1262-73. PubMed ID: 18326757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global gene expression analysis of the developing postnatal mouse retina.
    Dorrell MI; Aguilar E; Weber C; Friedlander M
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1009-19. PubMed ID: 14985324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expressed sequence tag analysis of human retina for the NEIBank Project: retbindin, an abundant, novel retinal cDNA and alternative splicing of other retina-preferred gene transcripts.
    Wistow G; Bernstein SL; Wyatt MK; Ray S; Behal A; Touchman JW; Bouffard G; Smith D; Peterson K
    Mol Vis; 2002 Jun; 8():196-204. PubMed ID: 12107411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration.
    Genini S; Zangerl B; Slavik J; Acland GM; Beltran WA; Aguirre GD
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):6038-50. PubMed ID: 20574030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.